Within 4 months of the ongoing COVID-19 pandemic caused by SARS-CoV-2, more than 250 nucleotide mutations have been detected in ORF1ab of the virus isolated from infected persons from different parts of the globe. These observations open up an obvious question about the rate and direction of mutational pressure for further vaccine and therapeutics designing. In this study, we did a comparative analysis of ORF1a and ORF1b by using the first isolate (Wuhan strain) as the parent sequence. We observed that most of the nucleotide mutations are C to U transitions. The rate of synonymous C to U transitions is significantly higher than the rate of non-synonymous ones, indicating negative selection on amino acid substitutions. Further, trends in nucleotide usage bias have been investigated in 49 coronaviruses species. A strong bias in nucleotide usage in fourfold degenerate sites toward uracil residues is seen in ORF1ab of all the studied coronaviruses: both in the ORF1a and in the ORF1b translated thanks to the programmed ribosomal frameshifting that has an efficiency of 14 – 45% in different species. A more substantial mutational U-pressure is observed in ORF1a than in ORF1b perhaps because ORF1a is translated more frequently than ORF1b. Mutational U-pressure is there even in ORFs that are not translated from genomic RNA plus strands, but the bias is weaker than in ORF1ab. Unlike other nucleotide mutations, mutational U-pressure caused by cytosine deamination, mostly occurring during the RNA plus strand replication and also translation, cannot be corrected by the proof-reading machinery of coronaviruses. The knowledge generated on the mutational U-pressure that becomes stronger during translation of viral RNA plus strands has implications for vaccine and nucleoside analog development for treating COVID-19 and other coronavirus infections.
Intrinsically disordered proteins are frequently involved in important regulatory processes in the cell thanks to their ability to bind several different targets performing sometimes even opposite functions. The PentUnFOLD algorithm is a physicochemical method that is based on new propensity scales for disordered, nonstable and stable elements of secondary structure and on the counting of stabilizing and destabilizing intraprotein contacts. Unlike other methods, it works with a PDB file, and it can determine not only those fragments of alpha helices, beta strands, and random coils that can turn into disordered state (the “dark” side of the disorder), but also nonstable regions of alpha helices and beta strands which are able to turn into random coils (the “light” side), and vice versa (H ↔ C, E ↔ C). The scales have been obtained from structural data on disordered regions from the middle parts of amino acid sequences only, and not on their expectedly disordered N- and C-termini. Among other tendencies we have found that regions of both alpha helices and beta strands that can turn into the disordered state are relatively enriched in residues of Ala, Met, Asp, and Lys, while regions of both alpha helices and beta strands that can turn into random coil are relatively enriched in hydrophilic residues, and Cys, Pro, and Gly. Moreover, PentUnFOLD has the option to determine the effect of secondary structure transitions on the stability of a given region of a protein. The PentUnFOLD algorithm is freely available at http://3.17.12.213/pent-un-fold and http://chemres.bsmu.by/PentUnFOLD.htm . Supplementary Information The online version contains supplementary material available at 10.1007/s00726-022-03153-5.
Within four months of the ongoing COVID-19 pandemic caused by SARS-CoV-2, more than 250 nucleotide mutations have been detected in the ORF1 of the virus isolated from different parts of the globe. These observations open up an obvious question about the rate and direction of mutational pressure for further vaccine and therapeutics designing. In this study, we did a comparative analysis of ORF1a and ORF1b by using the first isolate (Wuhan strain) as the parent sequence. We observed that most of the nucleotide mutations are C to U transitions. The rate of synonymous C to U transitions is significantly higher than the rate of nonsynonymous ones, indicating negative selection on amino acid substitutions. Further, trends in nucleotide usage bias have been investigated in 49 coronaviruses species. A strong bias in nucleotide usage in fourfold degenerated sites towards uracil residues is seen in ORF1 of all the studied coronaviruses. A more substantial mutational U pressure is observed in ORF1a than in ORF1b owing to the translation of ORF1ab via programmed ribosomal frameshifting. Unlike other nucleotide mutations, mutational U pressure caused by cytosine deamination, mostly occurring in the RNAplus strand, cannot be corrected by the proof-reading machinery of coronaviruses. The knowledge generated on the direction of mutational pressure during translation of viral RNAplus strands has implications for vaccine and nucleoside analogue development for treating covid-19 and other coronavirus infections.
Herein, a set of non-homologous proteins (238) that could bind the cobalt(ii) cations was selected from all the available Protein Data Bank structures with Co2+ cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.