Embedding of active substances in supramolecular systems has as the main goal to ensure the controlled release of the active ingredients. Whatever the final architecture or entrapment mechanism, modeling of release is challenging due to the moving boundary conditions and complex initial conditions. Despite huge diversity of formulations, diffusion phenomena are involved in practically all release processes. The approach in this paper starts, therefore, from mathematical methods for solving the diffusion equation in initial and boundary conditions, which are further connected with phenomenological conditions, simplified and idealized in order to lead to problems which can be analytically solved. Consequently, the release models are classified starting from the geometry of diffusion domain, initial conditions, and conditions on frontiers. Taking into account that practically all solutions of the models use the separation of variables method and integral transformation method, two specific applications of these methods are included. This paper suggests that “good modeling practice” of release kinetics consists essentially of identifying the most appropriate mathematical conditions corresponding to implied physicochemical phenomena. However, in most of the cases, models can be written but analytical solutions for these models cannot be obtained. Consequently, empiric models remain the first choice, and they receive an important place in the review.
Undoubtedly, the use of oximes represents real progress in counteracting intoxications with organophosphates (OP), through potentiating antidotal effects of atropine. The penetration extent of these compounds through the blood-brain barrier (BBB) to significantly reactivate phosphorylated or phosphonylated acetylcholinesterase (AChE) in the brain still remains a debatable issue. Penetration of biological barriers by oximes was investigated mainly through determination of several quantitative parameters characterizing digestive absorption and BBB penetration. A weak penetration of biological barriers could be concluded from the available experimental data. The functional parameters/therapeutic effects following the penetration of oximes through BBB, more precisely the antagonism of OP-induced seizures and hypothermia, prevention of brain damage and respiratory center protection, leading to the final end-point, the survival of intoxicated organisms, are of high interest. It seems obvious that oximes are weakly penetrating the BBB, with minimal brain AChE reactivation (<5%) in important functional areas, such as the ponto-medullar. The cerebral protection achieved through administration of oximes is only partial, without major impact on the antagonism of OP-induced seizures, hypothermia and respiratory center inhibition. The antidotal effects probably result from synergic effects of other PD properties, different from the brain AChE reactivation process. Oxime structures especially designed for enhanced BBB penetration, through potentiating the hydrophobic characteristics, more often produce neurotoxic effects. Certainly, obtaining oximes with broad action spectrum (active against all OP types) would make a sense, but certainly, such a target is not achievable only through the increase in their penetrability in the brain.
Accurate monitoring and evaluation of the hyperprolactinemia induced by xenobiotics is strongly recommended. The typical antipsychotics and some of the atypical agents (amisulpride, risperidone, paliperidone), as well as some antidepressants, antihypertensives and prokinetics, are the most important groups inducing hyperprolactinemia. The hyperprolactinemic effects are correlated with their affinity for dopamine D2 receptors, their blood-brain barrier penetration and, implicitly, the requested dose for adequate occupancy of cerebral D2 receptors. Consequently, integration of available pharmacokinetic and pharmacodynamic data supports the idea of therapeutic switch to non-hyperprolactinemic agents (especially aripiprazole) or their association, for an optimal management of antipsychotic-induced hyperprolactinemia. Possible alternative strategies for counteracting the xenobiotics-induced hyperprolactinemia are also mentioned.
This paper presents basic data on organophosphonate (OP) mechanisms of action, especially by toxicokinetic ⁄ toxicodynamic (TK ⁄ TD) process correlations. It is generally accepted that at least during onset of OP biological systems interaction, blood and tissue cholinesterase's inhibition represents OP exposure marker and initiating mechanisms for toxicodynamic effects, characteristic for cholinergic crisis. OP penetrability of various biological barriers conditioning TK characteristics are determined by a series of physico-chemical properties. Non-cholinergic effects, direct interactions with cellular structures and subsequent effects (excitotoxicity) triggered by cholinergic crisis are also briefly presented. Opposed to these OP TK ⁄ TD characteristics, the authors analysed the pharmacokinetic ⁄ pharmacodynamic (PK ⁄ PD) characteristics and their correlations for oximes, as basic OP antidotes, besides atropine and anticonvulsants. Phosphorilated cholinesterasis reactivators are mono or bispyridinium derivatives with quaternary ammonium atoms, high water solubility, ionized at physiological pH, distribution in extra-cellular space, very low digestive absorption and blood-brain barrier (BBB) penetrability. OP nerve gas acute toxicity is correlated with anti-acetylcholinesterase (AChE) activity and partition coefficient. The toxicity rank seems to be determined by lipophilicity, besides their specific AChE inhibitory property. It has the effect that acute toxicity is the resultant of a TD process closely linked and dependent in vivo upon molecular descriptors determinant for the TK process. For cholinesterasis reactivators, molecular and PK characteristics limit their effects, especially to the peripheral level. The absent or much reduced BBB penetrability allowed some researchers to suggest that reactivators' penetration and presence at central level are not necessary. The study of PK ⁄ PD correlations, molecular descriptors and biological membrane permeability of oximes can better define their antidotal effects mechanisms and, maybe, open a new perspective for field development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.