Succinate dehydrogenase is an indispensable enzyme involved in the Krebs cycle as well as energy coupling in the mitochondria and certain prokaryotes. During catalysis, succinate oxidation is coupled to ubiquinone reduction by an electron transfer relay comprising a flavin adenine dinucleotide cofactor, three iron-sulfur clusters, and possibly a heme b 556 . At the heart of the electron transport chain is a [4Fe-4S] cluster with a low midpoint potential that acts as an energy barrier against electron transfer. Hydrophobic residues around the [4Fe-4S] cluster were mutated to determine their effects on the midpoint potential of the cluster as well as electron transfer rates. SdhB-I150E and SdhB-I150H mutants lowered the midpoint potential of this cluster; surprisingly, the His variant had a lower midpoint potential than the Glu mutant. Mutation of SdhB-Leu-220 to Ser did not alter the redox behavior of the cluster but instead lowered the midpoint potential of the [3Fe-4S] cluster. To correlate the midpoint potential changes in these mutants to enzyme function, we monitored aerobic growth in succinate minimal medium, anaerobic growth in glycerol-fumarate minimal medium, non-physiological and physiological enzyme activities, and heme reduction. It was discovered that a decrease in midpoint potential of either the [4Fe-4S] cluster or the [3Fe-4S] cluster is accompanied by a decrease in the rate of enzyme turnover. We hypothesize that this occurs because the midpoint potentials of the [Fe-S] clusters in the native enzyme are poised such that direction of electron transfer from succinate to ubiquinone is favored. Electron transport (ET)3 chains are ubiquitous and play a key role in energy conservation in both aerobic and anaerobic respiration. Cofactors such as iron-sulfur ([Fe-S]) clusters, hemes, and flavins comprise the ET relays of respiratory chain enzymes and mediate electron transfer from a powerful reductant with a relatively low midpoint potential (E m ) to a final oxidant with a relatively high E m . The ET chain usually involves cofactors from multiple enzymes and the membrane-soluble ubiquinone or menaquinone pool, and the energetics of individual ET steps are not always downhill. In many redox enzymes, the exception often occurs in the form of an [Fe-S] cluster with an unusually low E m located at an intermediate position in the ET relay (1-4). Thus during catalysis, electrons must surmount the energy barrier imposed by the low potential cluster despite the overall downhill reaction between the reductant and oxidant. Controversy continues to surround the issue as to whether E m values of cofactors play a role in determining the rate of electron transfer through redox enzymes, especially that of the low potential cluster (5-10). It would thus be of great interest to use a genetically modifiable model system to study the effects of E m modulation on observed catalytic rates of electron transfer.Succinate dehydrogenase (Sdh, Complex II in eukaryotes) is an indispensable enzyme involved in the Krebs cycle and...
The complete genome of the solvent tolerant Staphylococcus warneri SG1 was recently published. This Gram-positive bacterium is tolerant to a large spectrum of organic solvents including short-chain alcohols, alkanes, esters and cyclic aromatic compounds. In this study, we applied a two-dimensional liquid chromatography (2D-LC) mass spectrometry (MS) shotgun approach, in combination with quantitative 2-MEGA (dimethylation after guanidination) isotopic labeling, to compare the proteomes of SG1 grown under butanol-free and butanol-challenged conditions. In total, 1585 unique proteins (representing 65% of the predicted open reading frames) were identified, covering all major metabolic pathways. Of the 967 quantifiable proteins by 2-MEGA labeling, 260 were differentially expressed by at least 1.5-fold. These proteins are involved in energy metabolism, oxidative stress response, lipid and cell envelope biogenesis, or have chaperone functions. We also applied differential isotope labeling LC-MS to probe metabolite changes in key metabolic pathways upon butanol stress. This is the first comprehensive proteomic and metabolomic study of S. warneri SG1 and presents an important step toward understanding its physiology and mechanism of solvent tolerance.
Iron-sulfur ([Fe-S]) clusters are common in electron transfer proteins, and their midpoint potentials (E(m) values) play a major role in defining the rate at which electrons are shuttled. The E(m) values of [Fe-S] clusters are largely dependent on the protein environment as well as solvent accessibility. The electron transfer subunit (DmsB) of Escherichia coli dimethylsulfoxide reductase contains four [4Fe-4S] clusters (FS1-FS4) with E(m) values between -50 and -330 mV. We have constructed an in silico model of DmsB and addressed the roles of a group of residues surrounding FS4 in electron transfer, menaquinol (MQH(2)) binding, and protein control of its E(m). Residues Pro80, Ser81, Cys102, and Tyr104 of DmsB are located at the DmsB-DmsC interface and are critical for the binding of the MQH(2) inhibitor analogue 2-n-heptyl-4-hydroxyquinoline N-oxide (HOQNO) and the transfer of electrons from MQH(2) to FS4. Because the EPR spectrum of FS4 is complicated by spectral overlap and spin-spin interactions with the other [4Fe-4S] clusters of DmsB, we evaluated mutant effects on FS4 in double mutants (with a DmsB-C102S mutation) in which FS4 is assembled as a [3Fe-4S] cluster (FS4([3Fe)(-)(4S])). The DmsB-C102S/Y104D and DmsB-C102S/Y104E mutants dramatically lower the E(m) of FS4([3Fe)(-)(4S]) from 275 to 150 mV and from 275 to 145 mV, respectively. Mutations of positively charged residues around FS4([3Fe)(-)(4S]) lower its E(m), but mutations of negatively charged residues have negligible effects. The E(m) of FS4([3Fe)(-)(4S]) in the DmsB-C102S mutant is insensitive to HOQNO as well as to changes in pH from 5 to 7. The FS4([3Fe)(-)(4S]) E(m) of the DmsB-C102S/Y104D mutant increases in the presence of HOQNO and decreasing pH. Analyses of the mutants suggest that the maximum achievable E(m) for FS4([3Fe)(-)(4S]) of DmsB is approximately 275 mV.
The Complex II family of enzymes, comprising the respiratory succinate dehydrogenases and fumarate reductases, catalyze reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, the soluble fumarate reductases (e.g. that from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and the FAD was examined. The variants SdhA-R286A/K/Y and -H242A/Y, that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in assembly of a noncovalent FAD cofactor, which led to a significant decrease (−87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The “free” and “occupied” states of the active site were linked to the reduced and oxidized states of the FAD, respectively. Our data allows for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD.
Escherichia coli succinate dehydrogenase (Sdh) belongs to the highly conserved complex II family of enzymes that reduce ubiquinone. These enzymes do not generate a protonmotive force during catalysis and are electroneutral. Because of its electroneutrality, the quinone reduction reaction must consume cytoplasmic protons which are released stoichiometrically during succinate oxidation. The X-ray crystal structure of E. coli Sdh shows that residues SdhB (G227), SdhC (D95), and SdhC (E101) are located at or near the entrance of a water channel that has been proposed to function as a proton wire connecting the cytoplasm to the quinone binding site. However, the pig and chicken Sdh enzymes show an alternative entrance to the water channel via the conserved SdhD (Q78) residue. In this study, site-directed mutants of these four residues were created and characterized by in vivo growth assays, in vitro activity assays, and electron paramagnetic resonance spectroscopy. We show that the observed water channel in the E. coli Sdh structure is the functional proton wire in vivo, while in vitro results indicate an alternative entrance for protons. In silico examination of the E. coli Sdh reveals a possible H-bonding network leading from the cytoplasm to the quinone binding site that involves SdhD (D15). On the basis of these results we propose an alternative proton pathway in E. coli Sdh that might be functional only in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.