This study compared patient dose and image quality of a mobile O-arm TM cone beam imaging system in the 3D scan acquisition mode to those of a 64 slice Computed Tomography (CT) imaging system. The investigation included patient dose, scattered radiation, and image quality measurements. The patient dose was measured using a 0.6cc Farmer ion chamber and 30 cm long Computed Tomography (CT) head and body polymethylmethacrylate (PMMA) phantoms. The results show that under identical radiographic techniques (kVp, mAs, etc.) and with the same scan length, the O-arm TM in 3D scan acquisition mode delivers approximately half the radiation dose of a 64 slice CT scanner. Scattered radiation was measured at several locations around the O-arm TM , at 1 m, 2 m and 3 m distances in 3D CT scan acquisition mode with a RadCal 10 × 5-180 pancake ion chamber using a 30cm long CT body phantom as the source of scatter. Similar measurements were made in a 64 slice CT scanner. The data demonstrate that scattered radiation from the O-arm TM to personnel involved in a clinical procedure is comparable to that from a 64 slice CT scanner. Image quality was compared by exposing a CATPHAN phantom to comparable doses in both the O-arm TM and the CT scanner. The resultant images were then evaluated for modulation transfer function (MTF), high-contrast spatial resolution, and low contrast sensitivity for clinical application purpose. The O-arm TM shows comparable high contrast to the CT (7 lp/cm vs. 8 lp/cm). The low contrast in the O-arm TM is not visible due to fixed pattern noise. For image guided surgery applications where the location of a structure is emphasized over a survey of all image details, the O-arm TM has some advantages due to wide radiation beam coverage and lower patient dose. The image quality of the O-arm TM needs significant improvement for other clinical applications where high image quality is desired.
We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine.
Radiation dose and image quality from a recently introduced mobile CT imaging system are presented. Radiation dose was measured using a conventional 100 mm pencil ionization chamber and CT polymethylmetacrylate (PMMA) body and head phantoms. Image quality was evaluated with a CATPHAN 500 phantom. Spatial resolution, low contrast resolution, Modulation Transfer Function (MTF), and Normalized Noise Power Spectrum (NNPS) were analyzed. Radiation dose and image quality were compared to those from a multi-detector CT scanner (Siemens Sensation 64). Under identical technique factors radiation dose (mGy/mAs) from the AIRO mobile CT system (AIRO) is higher than that from a 64 slice CT scanner. Based on MTF analysis, both Soft and Standard filters of the AIRO system lost resolution quickly compared to the Sensation 64 slice CT. The Siemens scanner had up to 7 lp/cm for the head FOV and H40 kernel and up to 5 lp/cm at body FOV for the B40f kernel. The Standard kernel in the AIRO system was evaluated to have 3 lp/cm and 4 lp/cm for the body and head FOVs respectively. NNPS of the AIRO shows low frequency noise due to ring-like artifacts which may be caused by detector calibration or lack of artifact reducing image post-processing. Due to a higher dose in terms of mGy/mAs at both head and body FOV, the contrast to noise ratio is higher in the AIRO system than in the Siemens scanner. However detectability of the low contrast objects is poorer in the AIRO due to the presence of ring artifacts in the location of the targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.