Bone is one of the most important organs in the human body. It provides structure, function, and protection for other vital organs; therefore, bone maintenance and homeostasis are critical processes. As humans age, their bone mineral density decreases, which leads to diseases like osteoporosis. This disease affects one in two women and one in five men aged 50 and over. As the aging population increases, the interest and significance of studying this debilitating bone disease becomes more relevant. Current therapeutic products for osteoporosis have many side effects and can be taken for a limited number of years. Most therapeutic products only focus on decreasing bone resorption, not increasing bone formation. Bone morphogenetic protein 2 is an essential growth factor that drives osteoblast differentiation and activity and is essential for bone formation. However, usage in the clinic is unsuccessful due to several side effects. Recently, a signaling disparity in bone marrow stromal cells within the bone morphogenetic protein pathway that led to decreased bone morphogenetic protein 2 responsiveness was identified in patients diagnosed with osteoporosis. However, it is unclear how other cell populations, especially osteoblasts, which are key players in bone remodeling, are affected and whether the bone morphogenetic protein pathway is affected during osteoporosis. Our research group designed a novel peptide, casein kinase 2.3, that acts downstream of the bone morphogenetic receptor type Ia and increases bone mineralization in murine cells and primary bovine osteoblasts. The aim of the study presented here was to compare the responsiveness of osteoblasts to bone morphogenetic protein 2 and casein kinase 2.3, especially in patients diagnosed with osteoporosis. Mature osteoblasts were extracted from patients diagnosed with osteoporosis or osteoarthritis from Christiana Care Hospital in Newark, Delaware. They were stimulated with either bone morphogenetic protein 2 or casein kinase 2.3, and their effect on osteoblast activity was determined. The osteoporotic patients showed no mineralization response to bone morphogenetic protein 2 stimulation, while the osteoarthritis patients significantly responded to bone morphogenetic protein 2 stimulation. Furthermore, markers for osteoblast activity were increased by casein kinase 2.3, which was in sharp contrast to bone morphogenetic protein 2. This further supports a major bone morphogenetic protein signaling disparity in both the elderly and those suffering with osteoporosis. Both patient types did significantly respond to casein kinase 2.3. Further analysis of the bone morphogenetic protein pathway could lead to new therapeutic products for osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.