Previous studies using 'Hass' avocado and its small fruit (SF) phenotype as a model showed that SF is limited by cell number, not by cell size. In an attempt to explore the molecular mechanisms regulating avocado fruit cell division, we isolated four distinct avocado cell proliferation-related genes and investigated their expression characteristics, comparing normal fruit (NF) and SF developmental patterns. Three cDNAs termed PaCYCA1, PaCYCB1 and PaPCNA, encoding two mitotic cyclins and a proliferating cell nuclear antigen (PCNA), were first isolated from young NF tissues. The accumulation of their transcripts was predominant in mitotically active organs, including young fruitlets, leaves and roots. Furthermore, a fourth full-length cDNA, designated Pafw2.2-like, encoding a FW2.2 (fruit-weight)-like protein, was isolated from SF tissues. FW2.2 is postulated to function as a negative regulator of cell division in tomato fruit. Remarkably, northern analysis revealed that the accumulation of the mitotic cyclins and of PCNA transcripts gradually decreased in NF tissues during growth, whereas in SF, their levels had already decreased at earlier stages of fruit development, concomitant with an earlier arrest of fruit cell division activity. In contrast, parallel sq-RT-PCR analysis showed that Pafw2.2-like mRNA accumulation was considerably higher in SF tissues than in the same NF tissues essentially at all examined stages of fruit growth. Together, our data suggest essential roles for the two mitotic cyclins genes and the PCNA gene in regulating avocado fruit development. Furthermore, the possibility that Pafw2.2-like acts as does fw2.2 in tomato, is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.