SUMMARY
Caloric restriction (CR) extends lifespan in mammals, yet the mechanisms underlying its beneficial effects remain unknown. The manner in which CR has been implemented in longevity experiments is variable, with both timing and frequency of meals constrained by work schedules. It is commonplace to find that nocturnal rodents are fed during the daytime, and meals are spaced out, introducing prolonged fasting intervals. Since implementation of feeding paradigms over the lifetime is logistically difficult, automation is critical, but existing systems are expensive and not amenable to scale. We have developed a system that controls duration, amount and timing of food availability, and records feeding and voluntary wheel-running activity in mice. Using this system, mice were exposed to temporal or caloric restriction protocols. Mice under CR self-imposed a temporal component by consolidating food intake and unexpectedly increasing wheel-running activity during the rest phase, revealing previously unrecognized relationships among feeding, metabolism and behavior.
Caloric restriction (CR) prolongs lifespan, yet the mechanisms by which it does so remain poorly understood. Under CR, mice self-impose chronic cycles of 2-hour-feeding and 22-hour-fasting, raising the question whether calories, fasting, or time of day are causal. We show that 30%-CR is sufficient to extend lifespan 10%; however, a daily fasting interval and circadian-alignment of feeding act together to extend lifespan 35% in male C57BL/6J mice. These effects are independent of body weight. Aging induces widespread increases in gene expression associated with inflammation and decreases in expression of genes encoding components of metabolic pathways in liver from
ad lib
fed mice. CR at night ameliorates these aging-related changes. Thus, circadian interventions promote longevity and provide a perspective to further explore mechanisms of aging.
Malarial rhythmic fevers are the consequence of the synchronous bursting of red blood cells (RBCs) on completion of the malaria parasite asexual cell cycle. Here, we hypothesized that an intrinsic clock in the parasite Plasmodium chabaudi underlies the 24-hour-based rhythms of RBC bursting in mice. We show that parasite rhythms are flexible and lengthen to match the rhythms of hosts with long circadian periods. We also show that malaria rhythms persist even when host food intake is evenly spread across 24 hours, suggesting that host feeding cues are not required for synchrony. Moreover, we find that the parasite population remains synchronous and rhythmic even in an arrhythmic clock mutant host. Thus, we propose that parasite rhythms are generated by the parasite, possibly to anticipate its circadian environment.
Dietary restriction (DR) decreases body weight, improves health, and extends lifespan. DR can be achieved by controlling how much and/or when food is provided, as well as by adjusting nutritional composition. Because these factors are often combined during DR, it is unclear which are necessary for beneficial effects. Several drugs have been utilized that target nutrient-sensing gene pathways, many of which change expression throughout the day, suggesting that the timing of drug administration is critical. Here, we discuss how dietary and pharmacological interventions promote a healthy lifespan by influencing energy intake and circadian rhythms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.