Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. A complex of IL-11 and the IL-11 receptor (IL-11R) has been shown to interact with gp130, with high affinity, and to induce gp130-dependent signaling. In this study, we have identified residues crucial for the binding of murine IL-11 (mIL-11) to both the IL-11R and gp130 by examining the activities of mIL-11 mutants in receptor binding and cell proliferation assays. The location of these residues, as predicted from structural studies and a model of IL-11, reveals that mIL-11 has three distinct receptor binding sites. These are structurally and functionally analogous to the previously defined receptor binding sites I, II, and III of interleukin-6 (IL-6). This supports the hypothesis that IL-11 signals via the formation of a hexameric receptor complex and indicates that site III is a generic feature of cytokines that signal via association with gp130.
Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. IL-11 has been shown to induce gp130-dependent signaling through the formation of a high affinity complex with the IL-11 receptor (IL-11R) and gp130. Site-directed mutagenesis studies have identified three distinct receptor binding sites of IL-11, which enable it to form this high affinity receptor complex. Here we present data from immunoprecipitation experiments, using differentially tagged forms of ligand and soluble receptor components, which show that multiple copies of IL-11, IL-11R, and gp130 are present in the receptor complex. Furthermore, it is demonstrated that sites II and III of IL-11 are independent gp130 binding epitopes and that both are essential for gp130 dimerization. We also show that a stable high affinity complex of IL-11, IL-11R, and gp130 can be resolved by nondenaturing polyacrylamide gel electrophoresis, and its composition verified by second dimension denaturing polyacrylamide gel electrophoresis. Results indicate that the three receptor binding sites of IL-11 and the Ig-like domain of gp130 are all essential for this stable receptor complex to be formed. We therefore propose that IL-11 forms a hexameric receptor complex composed of two molecules each of IL-11, IL-11R, and gp130.
IL-11 is a member of the gp130 family of cytokines, which signal via assembly of multisubunit receptor complexes containing at least one molecule of the transmembrane signaling receptor gp130. IL-11 forms a high-affinity complex, thereby inducing gp130-dependent signaling. Previous studies have identified three distinct receptor binding sites, I, II, and III, crucial for the binding of murine IL-11 (mIL-11) to both the IL-11R and gp130. In this study, we have further characterized the role of the mIL-11 site III mutant W147A. We show that W147A is a high-affinity specific antagonist of mIL-11-mediated signaling in gp130/IL-11R-transfected Ba/F3 cells. The antagonistic action of W147A is due to its ability to competitively disrupt multimeric gp130/IL-11R signaling complex formation. We also show that W147A inhibits IL-11-mediated signaling in primary human endometrial cells, thus demonstrating the potential utility of W147A in suppressing IL-11 responses in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.