Modern autonomic function tests can non-invasively evaluate the severity and distribution of autonomic failure. They have sufficient sensitivity to detect even subclinical dysautonomia. Standard laboratory testing evaluates cardiovagal, sudomotor and adrenergic autonomic functions. Cardiovagal function is typically evaluated by testing heart rate response to deep breathing at a defined rate and to the Valsalva maneuver. Sudomotor function can be evaluated with the quantitative sudomotor axon reflex test and the thermoregulatory sweat test. Adrenergic function is evaluated by the blood pressure and heart rate responses to the Valsalva maneuver and to head-up tilt. Tests are useful in defining the presence of autonomic failure, their natural history, and response to treatment. They can also define patterns of dysautonomia that are useful in helping the clinician diagnose certain autonomic conditions. For example, the tests are useful in the diagnosis of the autonomic neuropathies and distal small fiber neuropathy. The autonomic neuropathies (such as those due to diabetes or amyloidosis) are characterized by severe generalized autonomic failure. Distal small fiber neuropathy is characterized by an absence of autonomic failure except for distal sudomotor failure. Selective autonomic failure (which only one system is affected) can be diagnosed by autonomic testing. An example is chronic idiopathic anhidrosis, where only sudomotor function is affected. Among the synucleinopathies, autonomic function tests can distinguish Parkinson's disease (PD) from multiple system atrophy (MSA). There is a gradation of autonomic failure. PD is characterized by mild autonomic failure and a length-dependent pattern of sudomotor involvement. MSA and pure autonomic failure have severe generalized autonomic failure while DLB is intermediate.
Orthostatic hypotension (OH) occurs when mechanisms for the regulation of orthostatic BP control fails. Such regulation depends on the baroreflexes, normal blood volume, and defenses against excessive venous pooling. OH is common in the elderly and is associated with an increase in mortality rate. There are many causes of OH. Aging coupled with diseases such as diabetes and Parkinson's disease results in a prevalence of 10-30% in the elderly. These conditions cause baroreflex failure with resulting combination of OH, supine hypertension, and loss of diurnal variation of BP. The treatment of OH is imperfect since it is impossible to normalize standing BP without generating excessive supine hypertension. The practical goal is to improve standing BP so as to minimize symptoms and to improve standing time in order to be able to undertake orthostatic activities of daily living, without excessive supine hypertension. It is possible to achieve these goals with a combination of fludrocortisone, a pressor agent (midodrine or droxidopa), supplemented with procedures to improve orthostatic defenses during periods of increased orthostatic stress. Such procedures include water bolus treatment and physical countermaneuvers. We provide a pragmatic guide on patient education and the patient-orientated approach to the moment to moment management of OH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.