Advanced solid-state batteries most likely will entail aggressive structures or architectures with constraints that typically limit processing temperatures. Considering this, we have identified the importance of providing lithiated electrode material...
Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin‐coating deposition method, and it was found that 6‐layer deposition of glycine‐FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine‐FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine‐FeOOH nanoparticle is suitable and environmentally‐friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation.
The diffusion of lithium ions decoupled from a solid polymer electrolyte matrix is the key for high-energy electrochemical devices with the safety needed for commercial use. This Letter reports how the ion mobility in a singlephase hybrid polyelectrolyte (SPHP) matrix can be tuned by changing an inorganic coordinating atom from silicon (Si) to germanium (Ge). Nuclear Magnetic Resonance (NMR) results show that the lithium ion activation barrier in the polyelectrolyte with Si can be modulated from 0.26 eV to the unprecedented value of 0.12 eV in the polyelectrolyte with Ge. Density functional theory is used to show that the electronic structures of both polymers are very different, although their chemical structures are very similar, except for the coordinating atom. This simple chemical substitution route will certainly increase the interest in these polymers for applications in electrochemical devices.
The Cover Feature illustrates an enhancement of the oxygen evolution reaction process. Iron oxyhydroxide nanoparticles as a cocatalyst tend to agglomerate throughout the surface of zinc oxide nanorods. The manuscript revealed that the addition of glycine as a dispersive agent enabled a homogeneity of nanoparticles with a high catalytic efficiency. More information can be found in the Article by R M. de Almeida et al. on page 476 in Issue 6, 2020 (DOI: 10.1002/cphc.201901171).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.