Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.
Pastoral systems are the dominant livestock production system in arid and semiarid regions of sub-Saharan Africa (SSA). They are often the only form of agriculture that can be practised due to unfavourable climate and soil fertility levels that prevent crop cultivation. Pastoralism can have negative impacts on the environment, including land degradation, greenhouse gas emissions and other gases to the atmosphere, soil erosion, water pollution and biodiversity loss. Here, we review the current knowledge on nitrogen (N) cycling, storage and loss pathways, with an emphasis on identification of N emission hotspots.Our review reports a large uncertainty in the amount of N lost as ammonia from excreta and manure storage, as well as N losses via nitrate and DON leaching. We also found that another major N loss pathway (18%) -soil N 2 emissions -has not yet been measured. In order to summarize the available information, we use a virtual pastoral farm, with characteristics and management practices obtained from a real farm, Kapiti Research Station in Kenya. For outlining N flows at this virtual farm, we used published data, data from global studies, satellite imagery and geographic information system (GIS) tools. Our results show that N inputs in pastoral systems are dominated by atmospheric N deposition (approx. 80 %), while inputs due to biological nitrogen fixation seems to play a smaller role. A major N loss pathway is nitrogen leaching (nitrate > DON) from pastures (33%). Cattle enclosures (bomas), where animals are kept during night, represent N emissions hotspots, representing 16 % of the total N losses from the system. N losses via ammonia volatilization and N 2 O were four and three orders of magnitude higher from bomas than from the pasture, respectively. Based on our results, we further identify future research requirements and highlight the urgent need for experimental data collection to quantify nitrogen losses from manure in animal congregation areas. Such information is needed to improve our understanding on N cycling in pastoral systems in semi-arid regions and to provide practical recommendations for managers that can help with decision-making on management strategies in pastoral systems in semi-arid savannas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.