BACKGROUND Genomic studies have yielded important insights into the pathogenesis of obesity. Circulating microRNAs (miRNAs) are valuable biomarkers of systemic diseases and potential therapeutic targets. We sought to define the circulating pattern of miRNAs in obesity and examine changes after weight loss. METHODS We assessed the genomewide circulating miRNA profile cross-sectionally in 32 men and after surgery-induced weight loss in 6 morbidly obese patients. The most relevant miRNAs were cross-sectionally validated in 80 men and longitudinally in 22 patients (after surgery-induced weight loss). We evaluated the effects of diet-induced weight loss in 9 obese patients. Thirty-six circulating miRNAs were associated with anthropometric variables in the initial sample. RESULTS In the validation study, morbidly obese patients showed a marked increase of miR-140-5p, miR-142-3p (both P < 0.0001), and miR-222 (P = 0.0002) and decreased levels of miR-532–5p, miR-125b, miR-130b, miR-221, miR-15a, miR-423-5p, and miR-520c-3p (P < 0.0001 for all). Interestingly, in silico targets leukemia inhibitory factor receptor (LIFR) and transforming growth factor receptor (TGFR) of miR-140-5p, miR-142-3p, miR-15a, and miR-520c-3p circulated in association with their corresponding miRNAs. Moreover, a discriminant function of 3 miRNAs (miR-15a, miR-520c-3p, and miR-423-5p) was specific for morbid obesity, with an accuracy of 93.5%. Surgery-induced (but not diet-induced) weight loss led to a marked decrease of miR-140-5p, miR-122, miR-193a-5p, and miR-16-1 and upregulation of miR-221 and miR-199a-3p (P < 0.0001 for all). CONCLUSIONS Circulating miRNAs are deregulated in severe obesity. Weight loss–induced changes in this profile and the study of in silico targets support this observation and suggest a potential mechanistic relevance.
Obesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including type 2 diabetes, cardiovascular diseases, nonalcoholic fatty liver disease and cancer. Adipose tissue is considered one of the largest endocrine organs in the body as well as an active tissue for cellular reactions and metabolic homeostasis rather than an inert tissue for energy storage. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a large number of hormones, cytokines, extracellular matrix proteins and growth and vasoactive factors, collectively termed adipokines that influence a variety of physiological and pathophysiological processes. In the obese state, excessive visceral fat accumulation causes adipose tissue dysfunctionality that strongly contributes to the onset of obesity-related comorbidities. The mechanisms underlying adipose tissue dysfunction include adipocyte hypertrophy and hyperplasia, increased inflammation, impaired extracellular matrix remodelling and fibrosis together with an altered secretion of adipokines. This review describes how adipose tissue becomes inflamed in obesity and summarizes key players and molecular mechanisms involved in adipose inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.