Since the discovery by Rosenberg and collaborators of the antitumor activity of cisplatin 35 years ago, three platinum antitumor drugs (cisplatin, carboplatin and oxaliplatin) have enjoyed a huge clinical and commercial hit. Ever since the initial discovery of the anticancer activity of cisplatin, major efforts have been devoted to elucidate the biochemical mechanisms of antitumor activity of cisplatin in order to be able to rationally design novel platinum based drugs with superior pharmacological profiles. In this report we attempt to provide a current picture of the known facts pertaining to the mechanism of action of the drug, including those involved in drug uptake, DNA damage signals transduction, and cell death through apoptosis or necrosis. A deep knowledge of the biochemical mechanisms, which are triggered in the tumor cell in response to cisplatin injury not only may lead to the design of more efficient platinum antitumor drugs but also may provide new therapeutic strategies based on the biochemical modulation of cisplatin activity.
There is a need to develop a single and highly effective vaccine against the emerging chikungunya virus (CHIKV), which causes a severe disease in humans. Here, we have generated and characterized the immunogenicity profile and the efficacy of a novel CHIKV vaccine candidate based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). MVA-CHIKV was stable in cell culture, expressed the CHIKV structural proteins, and triggered the cytoplasmic accumulation of Golgi apparatus-derived membranes in infected human cells. Furthermore, MVA-CHIKV elicited robust innate immune responses in human macrophages and monocyte-derived dendritic cells, with production of beta interferon (IFN-), proinflammatory cytokines, and chemokines. After immunization of C57BL/6 mice with a homologous protocol (MVA-CHIKV/MVA-CHIKV), strong, broad, polyfunctional, and durable CHIKVspecific CD8؉ T cell responses were elicited. The CHIKV-specific CD8 ؉ T cells were preferentially directed against E1 and E2 proteins and, to a lesser extent, against C protein. CHIKV-specific CD8؉ memory T cells of a mainly effector memory phenotype were also induced. The humoral arm of the immune system was significantly induced, as MVA-CHIKV elicited high titers of neutralizing antibodies against CHIKV. Remarkably, a single dose of MVA-CHIKV protected all mice after a high-dose challenge with CHIKV. In summary, MVA-CHIKV is an effective vaccine against chikungunya virus infection that induced strong, broad, highly polyfunctional, and long-lasting CHIKV-specific CD8 ؉ T cell responses, together with neutralizing antibodies against CHIKV. These results support the consideration of MVA-CHIKV as a potential vaccine candidate against CHIKV. IMPORTANCEWe have developed a novel vaccine candidate against chikungunya virus (CHIKV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). Our findings revealed that MVA-CHIKV is a highly effective vaccine against chikungunya virus, with a single dose of the vaccine protecting all mice after a high-dose challenge with CHIKV. Furthermore, MVA-CHIKV is highly immunogenic, inducing strong innate responses: high, broad, polyfunctional, and long-lasting CHIKV-specific CD8 ؉ T cell responses, together with neutralizing antibodies against CHIKV. This work provides a potential vaccine candidate against CHIKV.
SummaryThe human cytomegalovirus (HCMV) has been shown to complete its final envelopment on cytoplasmic membranes prior to its secretion to the extracellular medium. However, the nature of these membranes has not been characterized. It is thought that HCMV acquires its final envelope from the trans-Golgi network (TGN), though we and others have previously reported a role for endocytic membranes. Here we studied the localization of cellular markers in HCMV-infected cells and in isolated viruses. Immunofluorescence staining indicated that HCMV induces the recruitment of TGN and endosomal markers to the virus factory. Immuno-gold labelling of isolated viral particles and electron microscopy demonstrated the incorporation of TGN46, endosomal markers early endosomal antigen 1, annexin I, transferrin receptor and CD63, and the cation-independent mannose 6-phosphate receptor, which traffics between the TGN and endosomes into the viral envelope. Virus immunoprecipitation assays demonstrated that virions containing TGN46 and CD63 were infectious. This study reconciles the apparent controversy regarding the nature of the HCMV assembly site and suggests that HCMV has the ability to generate a novel membrane compartment containing markers for both TGN and endosomes, or that the membranes that HCMV uses for its envelope may be vesicles in transit between the TGN and endosomes.
Human cytomegalovirus (HCMV) completes its final envelopment on intracellular membranes before it is released from the cell. The mechanisms underlying these processes are not understood. Here we studied the role of Rab27a, a regulator of lysosome-related organelle transport, in HCMV production. HCMV infection increased Rab27a expression, and recruitment of Rab27a to membranous strutures at the assembly site. Immuno-gold labelling demonstrated association of Rab27a with viral envelopes. CMV production was reduced after knock-down of Rab27a, and in Rab27a-deficient ashen melanocytes. This study shows a requirement for Rab27a in the CMV life cycle and suggests that CMV and LRO biogenesis share common molecular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.