Climate change driven alterations in salinity and carbonate chemistry are predicted to have significant implications particularly for northern costal organisms, including the economically important filter feeders Mytilus edulis and Ciona intestinalis. However, despite a growing number of studies investigating the biological effects of multiple environmental stressors, the combined effects of elevated pCO2 and reduced salinity remain comparatively understudied. Changes in metabolic costs associated with homeostasis and feeding/digestion in response to environmental stressors may reallocate energy from growth and reproduction, affecting performance. Although these energetic trade-offs in response to changes in routine metabolic rates have been well demonstrated fewer studies have investigated how these are affected by changes in feeding plasticity. Consequently, the present study investigated the combined effects of 26 days’ exposure to elevated pCO2 (500 µatm and 1000 µatm) and reduced salinity (30, 23, and 16) on the energy available for growth and performance (Scope for Growth) in M. edulis and C. intestinalis, and the role of metabolic rate (oxygen uptake) and feeding plasticity [clearance rate (CR) and absorption efficiency] in this process. In M. edulis exposure to elevated pCO2 resulted in a 50% reduction in Scope for Growth. However, elevated pCO2 had a much greater effect on C. intestinalis, with more than a 70% reduction in Scope for Growth. In M. edulis negative responses to elevated pCO2 are also unlikely be further affected by changes in salinity between 16 and 30. Whereas, under future predicted levels of pCO2C. intestinalis showed 100% mortality at a salinity of 16, and a >90% decrease in Scope for Growth with reduced biomass at a salinity of 23. Importantly, this work demonstrates energy available for production is more dependent on feeding plasticity, i.e. the ability to regulate CR and absorption efficiency, in response to multiple stressors than on more commonly studied changes in metabolic rates.
Background: Sex or gender disparity in skin cancer has been documented for a long time at the population level. UV radiation (UVR) is a common environmental risk for all three major types of skin cancer: cutaneous melanoma (CM), basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). The underlying mechanism for sex disparity has been largely attributed to sex-differentiated behaviour patterns related to UVR. Non-UVR factors such as intrinsic physiological differences have been suggested but remain understudied. Aims, Materials and Methods: This review summarizes and compares the known sex differences in three skin cancer types with regard to body site distribution and age influence. Results: We found a similar age-dependent sex difference pattern in CM and BCC. Specifically, CM and BCC tend to show higher incidence in young women and old men, with a switching age around menopause. The switching age suggests involvement of sex hormones, which has shown controversial influence on skin cancers at epidemiological level. Literatures regarding sex hormone receptors for oestrogen, androgen and progesterone are summarized for potential explanations at molecular level. Discussion: Overall, more and more evidence suggests non-UVR factors such as sex hormones play critical roles in skin cancer (especially CM and BCC), yet solid population and molecular evidence are required. Incidences of skin cancer are increasing which suggests limited effect for the current UVR-avoidance prevention methods. Conclusion: Fully understanding the causes of sex disparities in incidence is necessary for developing a comprehensive prevention strategy. V. Collier and M. Musicante have contributed equally to this work.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.