Modulation of brain olfactory (OR) and taste receptor (TASR) expression was recently reported in neurological diseases. However, there is still limited evidence of these genes’ expression in the human brain and the transcriptional regulation mechanisms involved remain elusive. We explored the possible expression and regulation of selected OR and TASR in the human orbitofrontal cortex (OFC) of sporadic Alzheimer’s disease (AD) and non-demented control specimens using quantitative real-time RT-PCR and ELISA. Global H3K9me3 amounts were measured on OFC total histone extracts, and H3K9me3 binding at each chemoreceptor locus was examined through native chromatin immunoprecipitation. To investigate the potential interactome of the repressive histone mark H3K9me3 in OFC specimens, native nuclear complex co-immunoprecipitation (Co-IP) was combined with reverse phase-liquid chromatography coupled to mass spectrometry analysis. Interaction between H3K9me3 and MeCP2 was validated by reciprocal Co-IP, and global MeCP2 levels were quantitated. We found that OR and TAS2R genes are expressed and markedly downregulated in OFC at early stages of sporadic AD, preceding the progressive reduction in their protein levels and the appearance of AD-associated neuropathology. The expression pattern did not follow disease progression suggesting transcriptional regulation through epigenetic mechanisms. We discovered an increase of OFC global H3K9me3 levels and a substantial enrichment of this repressive signature at ORs and TAS2Rs proximal promoter at early stages of AD, ultimately lost at advanced stages. We revealed the interaction between H3K9me3 and MeCP2 at early stages and found that MeCP2 protein is increased in sporadic AD. Findings suggest MeCP2 might be implicated in OR and TAS2R transcriptional regulation through interaction with H3K9me3, and as an early event, it may uncover a novel etiopathogenetic mechanism of sporadic AD. Graphical abstract
Impaired brain clearance mechanisms may result in the accumulation of aberrant proteins that define Alzheimer’s disease (AD). The water channel protein astrocytic aquaporin 4 (AQP4) is essential for brain amyloid-β clearance, but it is known to be abnormally expressed in AD brains. The expression of AQPs is differentially regulated during diverse brain injuries, but, whereas AQP4 expression and function have been studied in AD, less is known about AQP5. AQP5 functions include not only water transport but also cell migration mediated by cytoskeleton regulation. Moreover, AQP5 has been reported to be expressed in astrocytes, which are regulated after ischemic and traumatic injury. Additionally, AQP5 is particularly abundant in the salivary glands suggesting that it may be a crucial factor in gland dysfunction associated with AD. Herein, we aim to determine whether AQP5 expression in submandibular glands and the brain was altered in AD. First, we demonstrated impaired AQP5 expression in submandibular glands in APP/PS1 mice and AD patients. Subsequently, we observed that AQP5 expression was upregulated in APP/PS1 cerebral cortex and confirmed its expression both in astrocytes and neurons. Our findings propose AQP5 as a significant role player in AD pathology, in addition to AQP4, representing a potential target for the treatment of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.