Antibiotic-resistant gonorrhea is now a reality, as well as the consequences of untreatable infections. Gonococcal eye infections result in blindness if not properly treated; they accounted for the vast majority of infections in children in homes for the blind in the pre-antibiotic era. Neisseria gonorrhoeae infects the eyes of infants born to mothers with gonorrhea and can also infect the eyes of adults. Changes in sexual practices may account for the rise in adult gonococcal eye infections, although some cases seem to have occurred with no associated genital infection. As gonorrhea becomes increasingly difficult to treat, the consequences for the treatment of gonococcal blindness must be considered as well. Monocaprin was shown to be effective in rapidly killing N. gonorrhoeae, and is non-irritating in ocular models. Repeated passage in sub-lethal monocaprin induces neither resistance in gonococci nor genomic mutations that are suggestive of resistance. Here, we show that 1 mM monocaprin kills 100% of N. gonorrhoeae in 2 min, and is equally effective against N. meningitidis, a rare cause of ophthalmia neonatorum that is potentially lethal. Monocaprin at 1 mM also completely kills Staphylococcus aureus after 60 min, and 25 mM kills 80% of Pseudomonas aeruginosa after 360 min. Previously, 1 mM monocaprin was shown to eliminate Chlamydia trachomatis in 5 min. Monocaprin is, therefore, a promising active ingredient in the treatment and prophylaxis of keratitis, especially considering the growing threat of gonococcal blindness due to antimicrobial resistance.
The formation of biofilms provides a formidable defense for many bacteria against antibiotics and host immune responses. As a consequence, biofilms are thought to be the root cause of most chronic infections, including those occurring on medical indwelling devices, endocarditis, urinary tract infections, diabetic and burn wounds, and bone and joint infections. In cystic fibrosis (CF), chronic Pseudomonas aeruginosa (P. aeruginosa) respiratory infections are the leading cause of morbidity and mortality in adults. Previous studies have shown that many bacteria can undergo a coordinated dispersal event in the presence of low concentrations of nitric oxide (NO), suggesting that NO could be used to initiate biofilm dispersal in chronic infections, enabling clearance of the more vulnerable planktonic cells. In this study, we describe efforts to create “all-in-one” cephalosporin-based NO donor prodrugs (cephalosporin-3′-diazeniumdiolates, C3Ds) that show both direct β-lactam mediated antibacterial activity and antibiofilm effects. Twelve novel C3Ds were synthesized and screened against a panel of P. aeruginosa CF clinical isolates and other human pathogens. The most active compound, AMINOPIP2 ((Z)-1-(4-(2-aminoethyl)piperidin-1-yl)-2-(((6R,7R)-7-((Z)-2-(2-aminothiazol-4-yl)-2-(((2-carboxypropan-2-yl)oxy)imino)acetamido)-2-carboxy-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl)methoxy)diazene 1-oxide)-ceftazidime 12, showed higher antibacterial potency than its parent cephalosporin and front-line antipseudomonal antibiotic ceftazidime, good stability against β-lactamases, activity against ceftazidime-resistant P. aeruginosa in vitro biofilms, and efficacy equivalent to ceftazidime in a murine P. aeruginosa respiratory infection model. The results support further evaluation of AMINOPIP2-ceftazidime 12 for P. aeruginosa lung infections in CF and a broader study of “all-in-one” C3Ds for other chronic infections.
Borrelia burgdorferi is the causative agent of Lyme borreliosis, which is the most common tick-borne human disease in Europe and North America. Currently, the diagnosis of Lyme borreliosis is based on serological tests allowing indirect detection of anti-Borrelia antibodies produced by patients. Their main drawback is a lack of sensitivity in the early phase of disease and an incapacity to prove an active infection. Direct diagnostic tests are clearly needed. The objectives of this study were to produce tools allowing sensitive detection of potential circulating Borrelia antigens and to evaluate them in a mouse model. We focused on two potential early bacterial makers, the highly variable OspC protein and the conserved protein FlaB. High-affinity monoclonal antibodies were produced and used to establish various immunoassays and western blot detection. A very good limit of detection for OspC as low as 17 pg/mL of sample was achieved with SPIE-IA. In infected mice, we were able to measure OspC in plasma with a mean value of 10 ng/mL at 7 days post-inoculation. This result suggests that OspC could be a good blood marker for diagnosis of Lyme borreliosis and that the tools developed during this study could be very useful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.