Carbamazepine and derivatives may induce eyelid nystagmus in the setting of acute intoxication. To the best of our knowledge, these are the first cases of drug-related eyelid nystagmus.
Background and purpose
The unanticipated detection by magnetic resonance imaging (MRI) in the brain of asymptomatic subjects of white matter lesions suggestive of multiple sclerosis (MS) has been named radiologically isolated syndrome (RIS). As the difference between early MS [i.e. clinically isolated syndrome (CIS)] and RIS is the occurrence of a clinical event, it is logical to improve detection of the subclinical form without interfering with MRI as there are radiological diagnostic criteria for that. Our objective was to use machine‐learning classification methods to identify morphometric measures that help to discriminate patients with RIS from those with CIS.
Methods
We used a multimodal 3‐T MRI approach by combining MRI biomarkers (cortical thickness, cortical and subcortical grey matter volume, and white matter integrity) of a cohort of 17 patients with RIS and 17 patients with CIS for single‐subject level classification.
Results
The best proposed models to predict the diagnosis of CIS and RIS were based on the Naive Bayes, Bagging and Multilayer Perceptron classifiers using only three features: the left rostral middle frontal gyrus volume and the fractional anisotropy values in the right amygdala and right lingual gyrus. The Naive Bayes obtained the highest accuracy [overall classification, 0.765; area under the receiver operating characteristic (AUROC), 0.782].
Conclusions
A machine‐learning approach applied to multimodal MRI data may differentiate between the earliest clinical expressions of MS (CIS and RIS) with an accuracy of 78%.
Despite the importance of cognitive function in multiple sclerosis, it is poorly represented in the Expanded Disability Status Scale (EDSS), the commonly used clinical measure to assess disability, suggesting that an analysis of eye movement, which is generated by an extensive and well-coordinated functional network that is engaged in cognitive function, could have the potential to extend and complement this more conventional measure. We aimed to measure the eye movement of a case series of MS patients with relapsing–remitting MS to assess their cognitive status using a conventional gaze tracker. A total of 41 relapsing–remitting MS patients and 43 age-matched healthy controls were recruited for this study. Overall, we could not find a clear common pattern in the eye motor abnormalities. Vertical eye movement was more impaired in MS patients than horizontal movement. Increased latencies were found in the prosaccades and reflexive saccades of antisaccade tests. The smooth pursuit was impaired with more corrections (backup and catchup movements, p<0.01). No correlation was found between eye movement variables and EDSS or disease duration. Despite significant alterations in the behavior of the eye movements in MS patients, which are compatible with altered cognitive status, there is no common pattern of these alterations. We interpret this as a consequence of the patchy, heterogeneous distribution of white matter involvement in MS that provokes multiple combinations of impairment at different points in the different networks involved in eye motor control. Further studies are therefore required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.