Background: Acetone is present in the earth´s atmosphere and extra-terrestrially. The knowledge of its chemical history in these environments represents a challenge with important implications for global tropospheric chemistry and astrochemistry. The results of a search for efficient barrierless pathways producing acetone from radicals in the gas phase are described in this paper. The spectroscopic properties of radicals needed for their experimental detection are provided. Methods: The reactants were acetone fragments of low stability and small species containing C, O and H atoms. Two exergonic bimolecular addition reactions involving the radicals CH3, CH3CO, and CH3COCH2, were found to be competitive according to the kinetic rates calculated at different temperatures. An extensive spectroscopic study of the radicals CH3COCH2 and CH3CO, as well as the CH2CHO isomer, was performed. Rovibrational parameters, anharmonic vibrational transitions, and excitations to the low-lying excited states are provided. For this purpose, RCCSD(T)-F12 and MRCI/CASSCF calculations were performed. In addition, since all the species presented non-rigid properties, a variational procedure of reduced dimensionality was employed to explore the far infrared region. Results: The internal rotation barriers were determined to be V3=143.7 cm-1 (CH3CO), V2=3838.7 cm-1 (CH2CHO) and V3=161.4 cm-1 and V2=2727.5 cm-1 (CH3COCH2).The splitting of the ground vibrational state due to the torsional barrier have been computed to be 2.997 cm-1, 0.0 cm-1, and 0.320 cm-1, for CH3CO, CH2CHO, and CH3COCH2, respectively. Conclusions: Two addition reactions, H+CH3COCH2 and CH3+CH3CO, could be considered barrierless formation processes of acetone after considering all the possible formation routes, starting from 58 selected reactants, which are fragments of the molecule. The spectroscopic study of the radicals involved in the formation processes present non-rigidity. The interconversion of their equilibrium geometries has important spectroscopic effects on CH3CO and CH3COCH2, but is negligible for CH2CHO.
Background: Acetone is present in the earth´s atmosphere and extra-terrestrially. The knowledge of its chemical history in these environments represents a challenge with important implications for global tropospheric chemistry and astrochemistry. The results of a search for efficient barrierless pathways producing acetone from radicals in the gas phase are described in this paper. The spectroscopic properties of radicals needed for their experimental detection are provided. Methods: The reactants were acetone fragments of low stability and small species containing C, O and H atoms. Two exergonic bimolecular addition reactions involving the radicals CH3, CH3CO, and CH3COCH2, were found to be competitive according to the kinetic rates calculated at different temperatures. An extensive spectroscopic study of the radicals CH3COCH2 and CH3CO, as well as the CH2CHO isomer, was performed. Rovibrational parameters, anharmonic vibrational transitions, and excitations to the low-lying excited states are provided. For this purpose, RCCSD(T)-F12 and MRCI/CASSCF calculations were performed. In addition, since all the species presented non-rigid properties, a variational procedure of reduced dimensionality was employed to explore the far infrared region. Results: The internal rotation barriers were determined to be V3=143.7 cm-1 (CH3CO), V2=3838.7 cm-1 (CH2CHO) and V3=161.4 cm-1 and V2=2727.5 cm-1 (CH3COCH2).The splitting of the ground vibrational state due to the torsional barrier have been computed to be 2.997 cm-1, 0.0 cm-1, and 0.320 cm-1, for CH3CO, CH2CHO, and CH3COCH2, respectively. Conclusions: Two addition reactions, H+CH3COCH2 and CH3+CH3CO, could be considered barrierless formation processes of acetone after considering all the possible formation routes, starting from 58 selected reactants, which are fragments of the molecule. The spectroscopic study of the radicals involved in the formation processes present non-rigidity. The interconversion of their equilibrium geometries has important spectroscopic effects on CH3CO and CH3COCH2, but is negligible for CH2CHO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.