The cyclic insertion conjecture of Borwein, Bradley, Broadhurst and Lisoněk states that inserting all cyclic shifts of some fixed blocks of 2's into the multiple zeta value ζ(1, 3, . . . , 1, 3) gives an explicit rational multiple of a power of π. In this paper we use motivic multiple zeta values to establish a non-explicit symmetric insertion result: inserting all possible permutations of some fixed blocks of 2's into ζ (1, 3, . . . , 1, 3) gives some rational multiple of a power of π.
Toxic epidermal necrolysis (TEN) is a rare but life threatening mucocutaneous reaction to drugs or their metabolites. It is characterised by widespread keratinocyte apoptosis and sloughing of the skin, erosions of the mucous membranes, painful blistering, and severe systemic disturbance. The pathophysiology of TEN is incompletely understood. Historically, it has been regarded as a drug-induced immune reaction initiated by cytotoxic lymphocytes via a human leukocyte antigen (HLA)-restricted pathway. Several mediators have been identified as contributors to the cell death seen in TEN, including; granulysin, soluble Fas ligand, perforin/granzyme, tumour necrosis factor-α (TNF-α), and TNF-related apoptosis-inducing ligand. Currently, granulysin is accepted as the most important mediator of T cell proliferation. There is uncertainty around the accepted management of TEN. The lack of definitive management guidelines for TEN is explained in part by the rarity of the disease and its high mortality rate, which makes it difficult to conduct randomised control trials on emerging therapies. Developments have been made in pharmacogenomics, with numerous HLA alleles identified; however, these have largely been ethnically specific. These associations have translated into screening recommendations for Han Chinese.
Acute febrile illness (AFI) is one of the most common reasons for seeking medical care in low-income and middle-income countries. Bacterial infections account for a relatively small proportion of AFIs; however, in the absence of a simple diagnostic test to guide clinical decisions, healthcare professionals often presume that a non-malarial febrile illness is bacterial in origin, potentially resulting in inappropriate antibiotic use. An accurate differential diagnostic tool for AFIs is thus essential, to both limit antibiotic use to bacterial infections and address the antimicrobial resistance crisis that is emerging globally, without resorting to multiple or complex pathogen-specific assays. The Biomarker for Fever-Diagnostic (BFF-Dx) study is one of the largest fever biomarker studies ever undertaken. We collected samples and classified disease aetiology in more than 1900 individuals, distributed among enrolment centres in three countries on two continents. Identical protocols were followed at each study site, and the same analyses were conducted in each setting, enabling like-with-like comparisons to be made among the large sample set generated. The BFF-Dx methodology can act as a model for other researchers, facilitating wider utility of the work in the future. The established sample collection is now accessible to researchers and companies and will facilitate the development of future fever-related diagnostic tests. Here, we outline the methodology used to determine the sample populations and to differentiate bacterial versus non-bacterial AFIs. Future publications will set out in more detail the study’s demographics, the causes of fever identified and the performance of selected biomarkers.
The 2014–16 Ebola Virus Disease (EVD) outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH), World Health Organization (WHO) and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64–100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running costs and can be integrated into other national diagnostic algorithms. The technology has on average a 2-hour sample-to-result time and allows for single specimen testing to overcome potential delays of batching. This model of a mobile laboratory equipped with Xpert Ebola test, staffed by local laboratory technicians, could serve to strengthen outbreak preparedness and response for future outbreaks of EVD in Liberia and the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.