The design of efficient municipal solid waste (MSW) pre-collection networks can contribute to the global efficiency and sustainability of the reverse logistic chain of MSW in modern cities. With this aim, in this paper a comprehensive methodology that involves making decisions in several stages, from waste fraction classification to the final optimization of waste bins’ location, was applied in two real cases of the city of Bahía Blanca, Argentina. This city, does not have much available data about waste generation and, therefore, an important fieldwork had to be performed for applying this methodology, involving estimating population density per block and waste generation rate per inhabitant, identifying the location of commercial and institutional buildings and also estimating its generation rate, as well as performing a characterization of the MSW from similar studies in the literature and surveys performed to make decisions. The modelling of the urban characteristics was performed in a geographic information system. In the bins’ location problem, a mixed-integer optimization model was applied, seeking to minimize the investment costs, given the maximum area available and the capacity of the bins. Different scenarios were analysed, considering different collection frequencies and the maximum distance to be travelled by the user.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.