When a reductive group G acts linearly on a complex projective scheme X, there is a stratification of X into G-invariant locally closed subschemes, with an open stratum X ss formed by the semistable points in the sense of Mumford's geometric invariant theory which has a categorical quotient X ss → X//G. In this article, we describe a method for constructing quotients of the unstable strata. As an application, we construct moduli spaces of sheaves of fixed Harder-Narasimhan type with some extra data (an 'n-rigidification') on a projective base.
We define and study the motive of the moduli stack of vector bundles of fixed rank and degree over a smooth projective curve in Voevodsky’s category of motives. We prove that this motive can be written as a homotopy colimit of motives of smooth projective Quot schemes of torsion quotients of sums of line bundles on the curve. When working with rational coefficients, we prove that the motive of the stack of bundles lies in the localizing tensor subcategory generated by the motive of the curve, using Białynicki-Birula decompositions of these Quot schemes. We conjecture a formula for the motive of this stack, inspired by the work of Atiyah and Bott on the topology of the classifying space of the gauge group, and we prove this conjecture modulo a conjecture on the intersection theory of the Quot schemes.
We study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.
For a complex reductive group G acting linearly on a complex affine space V with respect to a character ρ, we show two stratifications of V associated to this action (and a choice of invariant inner product on the Lie algebra of the maximal compact subgroup of G) coincide. The first is Hesselink's stratification by adapted 1-parameter subgroups and the second is the Morse theoretic stratification associated to the norm square of the moment map. We also give a proof of a version of the Kempf-Ness theorem, which states that the geometric invariant theory quotient is homeomorphic to the symplectic reduction (both taken with respect to ρ). Finally, for the space of representations of a quiver of fixed dimension, we show that the Morse theoretic stratification and Hesselink's stratification coincide with the stratification by Harder-Narasimhan types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.