The Masquelet technique depends on pre-development of a foreign-body membrane to support bone regeneration with grafts over three times larger than the traditional maximum. To date, the procedure has always used spacers made of bone cement, which is the polymer polymethyl methacrylate (PMMA), to induce the foreign-body membrane. This study sought to compare (i) morphology, factor expression, and cellularity in membranes formed by PMMA, titanium, and polyvinyl alcohol sponge (PVA) spacers in the Masquelet milieu and (ii) subsequent bone regeneration in the same groups. Ten-week-old, male Sprague-Dawley rats were given an externally stabilized, 6 mm femur defect, and a pre-made spacer of PMMA, titanium, or PVA was implanted. All animals were given 4 weeks to form a membrane, and those receiving an isograft were given 10 weeks post-implantation to union. All samples were scanned with microCT to measure phase 1 and phase 2 bone formation. Membrane samples were processed for histology to measure membrane morphology, cellularity, and expression of the factors BMP2, TGFβ, VEGF, and IL6. PMMA and titanium spacers created almost identical membranes and phase 1 bone. PVA spacers were uniformly infiltrated with tissue and cells and did not form a distinct membrane. There were no quantitative differences in phase 2 bone formation. However, PMMA induced membranes supported functional union in 6 of 7 samples while a majority of titanium and PVA groups failed to achieve the same. Spacer material can alter the membrane enough to disrupt phase 2 bone formation. The membrane's role in bone regeneration is likely more than just as a physical barrier. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
The acute promyelocytic leukemia (APL) has been treated with all-trans retinoic acid (RA) for decades. While RA has largely been ineffective in non-APL AML subtypes, co-treatments combining RA and other agents are currently in clinical trials. Using the RA-responsive non-APL AML cell line HL-60, we tested the efficacy of the Src family kinase (SFK) inhibitor bosutinib on RA-induced differentiation. HL-60 has been recently shown to bear fidelity to a subtype of AML that respond to RA. We found that co-treatment with RA and bosutinib enhanced differentiation evidenced by increased CD11b expression, G/G cell cycle arrest, and respiratory burst. Expression of the SFK members Fgr and Lyn was enhanced, while SFK activation was inhibited. Phosphorylation of several sites of c-Raf was increased and expression of AhR and p85 PI3K was enhanced. Expression of c-Cbl and mTOR was decreased. Our study suggests that SFK inhibition enhances RA-induced differentiation and may have therapeutic value in non-APL AML.
IntroductionMouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength.Woven Bone Origin StudiesIn twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods.Mechanical Strength StudiesSubsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic models where calcified cartilage percent is double our highest value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.