The yellow-banded bumblebee Bombus terricola was common in North America but has recently declined and is now on the IUCN Red List of threatened species. The causes of B. terricola’s decline are not well understood. Our objectives were to create a partial genome and then use this to estimate population data of conservation interest, and to determine whether genes showing signs of recent selection suggest a specific cause of decline. First, we generated a draft partial genome (contig set) for B. terricola, sequenced using Pacific Biosciences RS II at an average depth of 35×. Second, we sequenced the individual genomes of 22 bumblebee gynes from Ontario and Quebec using Illumina HiSeq 2500, each at an average depth of 20×, which were used to improve the PacBio genome calls and for population genetic analyses. The latter revealed that several samples had long runs of homozygosity, and individuals had high inbreeding coefficient F, consistent with low effective population size. Our data suggest that B. terricola’s effective population size has decreased orders of magnitude from pre-Holocene levels. We carried out tests of selection to identify genes that may have played a role in ameliorating environmental stressors underlying B. terricola’s decline. Several immune-related genes have signatures of recent positive selection, which is consistent with the pathogen-spillover hypothesis for B. terricola’s decline. The new B. terricola contig set can help solve the mystery of bumblebee decline by enabling functional genomics research to directly assess the health of pollinators and identify the stressors causing declines.
Bumble Bee Watch is a community science program where participants submit photos of bumble bees from across Canada and the United States for expert verification. The data can be used to help better understand bumble bee biology and aid in their conservation. Yet for community science programs like this to be successful and sustainable, it is important to understand the participant demographics, what motivates them, and the outcomes of their participation, as well as areas that are working well or could be improved. It is also important to understand who verifies the submissions, who uses the data and their views on the program. Of the surveyed users, most participate to contribute to scientific data collection (88%), because of a worry about bees and a desire to help save them (80%), to learn more about species in their property (63%) or region (56%), and because of a personal interest (59%). About 77% report increased awareness of species diversity, while 84% report improvement in their identification skills. We found that 81% had at least one college or university degree. There were more respondents from suburban and rural areas than urban areas, but area did not affect numbers of submissions. While half were between 45 and 64 years of age, age did not influence motivation or number of submissions. Respondents were happy with the program, particularly the website resources, the contribution to knowledge and conservation efforts, the educational values, and the ability to get identifications. Areas for improvement included app and website functionality, faster and more detailed feedback, localized resources, and more communication. Most respondents participate rarely and have submitted fewer than ten records, although about five percent are super users who participate often and submit more than fifty records. Suggested improvements to the program may increase this participation rate. Indeed, increased recruitment and retention of users in general is important, and advertising should promote the outcomes of participation. Fifteen experts responded to a separate survey and were favorable of the program although there were suggestions on how to improve the verification process and the quality of the submitted data. Suggested research questions that could be asked or answered from the data included filling knowledge gaps (species diversity, ranges, habitat, phenology, floral associations, etc.), supporting species status assessments, effecting policy and legislation, encouraging habitat restoration and management efforts, and guiding further research. However, only about half have used data from the project to date. Further promotion of Bumble Bee Watch and community science programs in general should occur amongst academia, conservationists, policy makers, and the general public. This would help to increase the number and scope of submissions, knowledge of these species, interest in conserving them, and the overall program impact.
Many Bumble bee (Bombus) species are in decline and conservation efforts must be undertaken now to lessen or reverse the trend. For effective efforts to occur, the first step must be an accurate assessment of extinction risk. Yet only four of over forty Canadian Bombus species have been assessed by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC), despite evidence of decline for numerous species in this genus. Here, we evaluated the status of the American Bumble bee, Bombus pensylvanicus De Geer 1773 in Canada. A challenge with species assessments is obtaining adequate occurrence data temporally and spatially. Citizen science is a field where volunteers can collect data similar to that of experts over a broader coverage than researchers could often cover alone. We used data from the Bumble Bee Watch citizen science program, a database of North American Bombus records representing field survey and collection records from the late-1800s, and our own field surveys to evaluate the status of B. pensylvanicus in Canada using the International Union for the Conservation of Nature (IUCN) Red List assessment criteria. We found that B. pensylvanicus' Area of Occurrence has decreased by about 70%, its Extent of Occurrence by 37%, and its relative abundance by 89%, from 2007 to 2016 as compared to 1907-2006. These findings warrant an assessment of Critically Endangered using IUCN Red List criteria for B. pensylvanicus in Canada. Our findings will help inform management of B. pensylvanicus and exemplify the importance of citizen science programs for wildlife conservation.
Community science programs provide an opportunity to gather scientific data to inform conservation policy and management. This study examines the accuracy of community science identifications submitted to the North American Bumble Bee Watch program on a per species level and as compared to each species’ conservation status, as well as users (members of the public) and experts (those with expertise in the field of bumble bee biology) perceived ease of species identification. Photos of bumble bees (Hymenoptera: Apidae: Bombus) are submitted to the program by users and verified (species name corrected or assigned as necessary) by an expert. Over 22,000 records from over 4,900 users were used in the analyses. Accuracy was measured in two ways: percent agreement (percent of all records submitted correctly by users) and veracity (percent of all verified records submitted correctly by the users). Users generally perceived it harder to identify species than experts. User perceptions were not significantly different from the observed percent agreement or veracity, while expert perceptions were significantly different (overly optimistic) from the observed percent agreement but not the veracity. We compared user submitted names to final expert verified names and found that, for all species combined, the average percent agreement was 53.20% while the average veracity was 55.86%. There was a wide range in percent agreement values per species, although sample size and the role of chance did affect some species agreements. As the conservation status of species increased to higher levels of extinction risk, species were increasingly more likely to have a lower percent agreement but higher levels of veracity than species of least concern. For each species name submitted, the number of different species verified by experts varied from 1 to 32. Future research may investigate which factors relate to success in user identification through community science. These findings could play a role in informing the design of community science programs in the future, including for use in long-term and national-level monitoring of wild pollinators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.