Some researchers in psychology have ordinarily relied on traditional linear models when assessing the relationship between predictor(s) and a continuous outcome, even when the assumptions of the traditional model (e.g., normality, homoscedasticity) are not satisfied. Of those who abandon the traditional linear model, some opt for robust versions of the ANOVA and regression statistics that usually focus on relationships for the typical or average case instead of trying to model relationships for the full range of relevant cases. Generalized linear models, on the other hand, model the relationships among variables using all available and relevant data and can be appropriate under certain conditions of non-normality and heteroscedasticity. In this paper, we summarize the advantages and limitations of using generalized linear models with continuous outcomes and provide two simplified examples that highlight the methodology involved in selecting, comparing, and interpreting models for positively skewed outcomes and certain heteroscedastic relationships.
When tests consist of a small number of items, the use of latent trait estimates for secondary analyses is problematic. One area in particular where latent trait estimates have been problematic is when testing for item misfit. This article explores the use of plausible-value imputations to lessen the severity of the inherent measurement unreliability in shorter tests, and proposes a parametric bootstrap procedure to generate empirical sampling characteristics for null-hypothesis tests of item fit. Simulation results suggest that the proposed item-fit statistics provide conservative to nominal error detection rates. Power to detect item misfit tended to be less than Stone's item-fit statistic but higher than the statistic proposed by Orlando and Thissen, especially in tests with 20 or more dichotomously scored items.
Alternatives for positively skewed and heteroscedastic data include the Yuen-Welch (YW) test, data transformations, and the generalized linear model (GzLM). Because the GzLM is rarely considered in psychology compared to the other two, we compared these strategies conceptually and empirically. The YW test generally has satisfactory power, but its trimmed mean can deviate substantially from the arithmetic mean, which is often the desired parameter. The gamma GzLM can be used as a substitute for the log transformation and addresses the limitations in inference for the YW and data transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.