Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5‐fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA‐sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.
Plant roots are the major organs that take up water and dissolved nutrients. It has been widely shown that apoplastic barriers such as Casparian bands and suberin lamellae in the endo- and exodermis of roots have an important effect on regulating radial water and nutrient transport. Furthermore, it has been described that silicon can promote plant growth and survival under different conditions. However, the potential effects of silicon on the formation and structure of apoplastic barriers are controversial. A delayed as well as an enhanced suberization of root apoplastic barriers with silicon has been described in the literature. Here we review the effects of silicon on the formation of suberized apoplastic barriers in roots, and present results of the effect of silicon treatment on the formation of endodermal suberized barriers on barley seminal roots under control conditions and when exposed to osmotic stress. Chemical analysis confirmed that osmotic stress enhanced barley root suberization. While a supplementation with silicon in both, control conditions and osmotic stress, did not enhanced barley root suberization. These results suggest that enhanced stress tolerance of plants after silicon treatment is due to other responses.
The cover image is based on the Original Article Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity by Tino Kreszies et al., https://doi.org/10.1111/pce.13719.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.