Purpose:To examine the physiological profiles of wheelchair basketball and tennis and specifically to: (a) identify if there are differences in the physiological profiles of wheelchair basketball and tennis players of a similar playing standard, (b) to determine whether the competitive physiological demands of these sports differed (c) and to explore the relationship between the blood lactate [Bla−] response to exercise and to identify the sport specific heart rate (HR) training zones.Methods:Six elite athletes (4 male, 2 female) from each sport performed a submaximal and VO2 peak test in their sport specific wheelchair. Heart rate, VO2, and [Bla−] were measured. Heart rate was monitored during international competitions and VO2 was calculated from this using linear regression equations. Individual HR training zones were identified from the [Bla–] profile and time spent within these zones was calculated for each match.Results:Despite no differences in the laboratory assessment of HRpeak, the VO2peak was higher for the basketball players when compared with the tennis players (2.98 ± 0.91 vs 2.06 ± 0.71; P = .08). Average match HR (163 ± 11 vs 146 ± 16 beats-min–1; P = .06) and average VO2 (2.26 ± 0.06 vs 1.36 ± 0.42 L-min-1; P = .02) were higher during actual playing time of basketball when compared with whole tennis play. Consequently, differences in the time spent in the different training zones within and between the two sports existed (P < .05).Conclusions:Wheelchair basketball requires predominately high-intensity training, whereas tennis training requires training across the exercise intensity spectrum.
To compare the velocity characteristics of wheelchair propulsion with and without the use of a tennis racquet, eight male wheelchair tennis players performed a series of 20m sprints from a stationary start. The maximum velocities reached on average 4.39 ± 0.74 m/s; however, they were reduced by 0.18 ± 0.06 m/s during the racquet condition. Furthermore, when wheeling under the racquet condition, the velocities achieved during the first three pushes were significantly reduced. The reduction in maximum velocity and relative velocity contributions while holding a tennis racquet may have been due to an ineffective push technique resulting in low effectiveness of force application. The relation of these parameters and trunk stability is discussed.
Purpose:To examine the heart-rate (HR) response and court-movement variables during wheelchair tennis match play for high- (HIGH) and low- (LOW) performance-ranked players. Analysis of physiological and movement-based responses during match play offers an insight into the demands of tennis, allowing practical recommendations to be made.Methods:Fourteen male open-class players were monitored during tournament match play. A data logger was used to record distance and speed. HR was recorded during match play.Results:Significant rank-by-result interactions revealed that HIGH winners covered more forward distance than HIGH losers (P < .05) and had higher average (P < .05) and minimum (P < .01) HRs than LOW winners. LOW losers had higher average (P < .01) and minimum (P < .001) HRs than LOW winners. Independent of result, a significant main effect for rank was identified for maximum (P < .001) and average (P < .001) speed and total (P < .001), reverse (P < .001), and forward-to-reverse (P < .001) distance, with higher values for HIGH. Independent of rank, losing players experienced higher minimum HRs (P < .05). Main effects for maximum HR and actual playing time were not significant. Average playing time was 52.0 (9.1) min.Conclusions:These data suggest that independent of rank, tennis players were active for sufficient time to confer health-enhancing effects. While the relative playing intensity is similar, HIGH players push faster and farther than LOW players. HIGH players are therefore more capable of responding to ball movement and the challenges of competitive match play. Adjustments to the sport may be required to encourage skill developmental in LOW players, who move at significantly lower speeds and cover less distance.
International sporting competitions, including the Paralympic Games, are increasingly being held in hot and/or humid environmental conditions. Thus, a greater emphasis is being placed on preparing athletes for the potentially challenging environmental conditions of the host cities, such as the upcoming Games in Tokyo in 2020. However, evidence-based practices are limited for the impairment groups that are eligible to compete in Paralympic sport. This review aims to provide an overview of heat-related issues for Paralympic athletes alongside current recommendations to reduce thermal strain and technological advancements in the lead up to the Tokyo 2020 Paralympic Games. When competing in challenging environmental conditions, a number of factors may contribute to an athlete's predisposition to heightened thermal strain. These include the characteristics of the sport itself (type, intensity, duration, modality, and environmental conditions), the complexity and severity of the impairment and classification of the athlete. For heat vulnerable Paralympic athletes, strategies such as the implementation of cooling methods and heat acclimation can be used to combat the increase in heat strain. At an organizational level, regulations and specific heat policies should be considered for several Paralympic sports. Both the utilization of individual strategies and specific heat health policies should be employed to ensure that Paralympics athletes' health and sporting performance are not negatively affected during the competition in the heat at the Tokyo 2020 Paralympic Games.
The purpose of this study was to examine the physiological changes in elite wheelchair basketball players leading up to the 2000 Paralympics. Twelve male players attended regular physiological assessments on six occasions; averaged data of two sessions for each year were used. Physiological measures included body mass, skinfold measurements, peak oxygen uptake and peak power obtained during maximal sprinting. VO2peak significantly increased from 2.65 to 2.83 L·min-1 prior to the Paralympics. Training had little influence on the anthropometric measurements or maximal sprinting data. In conclusion, the GB wheelchair basketball players appeared to have high levels of aerobic and anaerobic fitness. The longitudinal physiological profiles leading to the 2000 Paralympics suggest that players improved their aerobic base while maintaining other fitness prerequisites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.