Oxycodone (oxy) is a semi-synthetic opioid commonly used as a pain medication that is also a widely abused prescription drug. While very limited studies have examined the effect of in utero oxy (IUO) exposure on neurodevelopment, a significant gap in knowledge is the effect of IUO compared with postnatal oxy (PNO) exposure on synaptogenesis-a key process in the formation of synapses during brain development-in the exposed offspring. One relatively unexplored form of cell-cell communication associated with brain development in response to IUO and PNO exposure are extracellular vesicles (EVs). EVs are membrane-bound vesicles that serve as carriers of cargo, such as microRNAs (miRNAs). Using RNA-Seq analysis, we identified distinct brain-derived extracellular vesicle (BDEs) miRNA signatures associated with IUO and PNO exposure, including their gene targets, regulating key functional pathways associated with brain development to be more impacted in the IUO offspring. Further treatment of primary 14-day in vitro (DIV) neurons with IUO BDEs caused a significant reduction in spine density compared to treatment with BDEs from PNO and saline groups. In summary, our studies identified for the first time, key BDE miRNA signatures in IUO-and PNO-exposed offspring, which could impact their brain development as well as synaptic function.Cells 2020, 9, 21 2 of 18 lack of studies that have compared the effect of in utero oxy (IUO) and postnatal oxy (PNO) exposure on synaptogenesis-a key process of the formation of synapses during brain development-in the exposed offspring. Synapses are key communication points between neurons, which play a critical role in the regulation of neurotransmission and brain plasticity [6].One relatively unexplored form of cell-cell communication associated with brain development in response to IUO and PNO exposure is extracellular vesicles (EVs) [7][8][9]. These membrane-bound vesicles, comprised of exosomes and microvesicles, originate from the multivesicular bodies and plasma membrane, respectively. Furthermore, these EVs, which carry a repertoire of cargo, including microRNAs (miRNAs), are shown to induce inflammation and subsequent neuronal damage, thus serving as key mediators of pathogenesis in several neurological and neurodegenerative disorders [10,11]. The main objective of this study was to identify differentially expressed BDEs miRNAs using RNA sequencing (RNA-Seq) and evaluate their impact on synaptic architecture during a key stage of brain development.
Prescription opioid abuse during and after pregnancy is a rising public health concern. While earlier studies have documented that offspring exposed to opioids in utero have impaired neurodevelopment, a significant knowledge gap remains in comparing the overall development between offspring exposed in utero and postnatally. Adding a layer of complexity is the role of heredity in the overall development of these exposed offspring. To fill in these important knowledge gaps, the current study uses a preclinical rat model mimicking oxycodone (oxy) exposure in utero (IUO) and postnatally (PNO) to investigate comparative and intergenerational effects in the two different treatment groups. While significant phenotypic attributes were observed with the two treatments and across the two generations, RNA sequencing revealed alterations in the expression of key synaptic genes in the two exposed groups in both generations. RNA sequencing and post validation of genes using RT-PCR highlighted the differential expression of several neuropeptides associated with the hypocretin system, a system recently implicated in addiction. Further, behavior studies revealed anxiety-like behaviors and social deficits that persisted even in the subsequent generations in the two treatment groups. To summarize, our study for the first time reveals a new line of investigation on the potential risks associated with oxy use during and after pregnancy, specifically the disruption of neurodevelopment and intergenerational impact on behavior.
Background: Increased risk of oxycodone (oxy) dependency during pregnancy has been associated with altered behaviors and cognitive deficits in exposed offspring. However, a significant knowledge gap remains regarding the effect of in utero and postnatal exposure on neurodevelopment and subsequent behavioral outcomes.Methods: Using a preclinical rodent model that mimics oxy exposure in utero (IUO) and postnatally (PNO), we employed an integrative holistic systems biology approach encompassing proton magnetic resonance spectroscopy (1H-MRS), electrophysiology, RNA-sequencing, and Von Frey pain testing to elucidate molecular and behavioral changes in the exposed offspring during early neurodevelopment as well as adulthood.Results:1H-MRS studies revealed significant changes in key brain metabolites in the exposed offspring that were corroborated with changes in synaptic currents. Transcriptomic analysis employing RNA-sequencing identified alterations in the expression of pivotal genes associated with synaptic transmission, neurodevelopment, mood disorders, and addiction in the treatment groups. Furthermore, Von Frey analysis revealed lower pain thresholds in both exposed groups.Conclusions: Given the increased use of opiates, understanding the persistent developmental effects of these drugs on children will delineate potential risks associated with opiate use beyond the direct effects in pregnant women.
Smoking remains a significant health and economic concern in the United States. Furthermore, the emerging pattern of nicotine intake between sexes further adds a layer of complexity. Nicotine is a potent psychostimulant with a high addiction liability that can significantly alter brain function. However, the neurobiological mechanisms underlying nicotine’s impact on brain function and behavior remain unclear. Elucidation of these mechanisms is of high clinical importance and may lead to improved therapeutics for smoking cessation. To fill in this critical knowledge gap, our current study focused on identifying sex-specific brain-derived extracellular vesicles (BDEV) signatures in male and female rats post nicotine self-administration. Extracellular vesicles (EVs) are comprised of phospholipid nanovesicles such as apoptotic bodies, microvesicles (MVs), and exosomes based on their origin or size. EVs are garnering significant attention as molecules involved in cell–cell communication and thus regulating the pathophysiology of several diseases. Interestingly, females post nicotine self-administration, showed larger BDEV sizes, along with impaired EV biogenesis compared to males. Next, using quantitative mass spectrometry-based proteomics, we identified BDEV signatures, including distinct molecular pathways, impacted between males and females. In summary, this study has identified sex-specific changes in BDEV biogenesis, protein cargo signatures, and molecular pathways associated with long-term nicotine self-administration.
Extracellular vesicles (EV) are nano-sized vesicles that have been garnering a lot of attention for their valuable role as potential diagnostic markers and therapeutic vehicles for a plethora of pathologies. Whilst EV markers from biofluids such as plasma, serum, urine, cerebrospinal fluid and in vitro cell culture based platforms have been extensively studied, a significant knowledge gap that remains is the characterization of specific organ derived EVs (ODE). Here, we present a standardized protocol for isolation and characterization of purified EV isolated from brain, heart, lung, kidney and liver from rat and postmortem human tissue. Next, using quantitative mass spectrometry based proteomics, we characterized the respective tissue EV proteomes that identified synaptophysin (SYP), caveolin-3 (CAV3), solute carrier family 22 member 2 (SLC22A2), surfactant protein B (SP-B), and fatty acid-binding protein 1 (FABP1) as potential markers for the brain, heart, kidney, lung, and liver-EV, respectively. These respective tissue specific markers were further validated using both immunoblotting and a nanoplasmonic platformsingle EV imaging analysis in the two species. To summarize, our study for the first time using traditional biochemical and high precision technology platforms provide a valuable proof of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.