Although there is a clear relationship between the degree of obesity and periodontal disease incidence, the mechanisms that underpin the links between these conditions are not completely understood. Understanding that myeloid-derived suppressor cells (MDSCs) are expanded during obesity and operate in a context-defined manner, we addressed the potential role of MDSCs to contribute toward obesity-associated periodontal disease. Flow cytometry revealed that in the spleen of mice fed a high-fat diet (HFD), expansion in monocytic MDSCs (M-MDSCs) significantly increased when compared with mice fed a low-fat diet (LFD). In the osteoclast differentiation assay, M-MDSCs isolated from the bone marrow of HFD-fed mice showed a larger number and area of osteoclasts with a greater number of nuclei. In the M-MDSCs of HFD-fed mice, several osteoclast-related genes were significantly elevated when compared with LFD-fed mice according to a focused transcriptomic platform. In experimental periodontitis, the number and percentage of M-MDSCs were greater, with a significantly larger increase in HFD-fed mice versus LFD-fed mice. In the spleen, the percentage of M-MDSCs was significantly higher in HFD-fed periodontitis-induced (PI) mice than in LFD-PI mice. Alveolar bone volume fraction was significantly reduced in experimental periodontitis and was further decreased in HFD-PI mice as compared with LFD-PI mice. The inflammation score was significantly higher in HFD-PI mice versus LFD-PI mice, with a concomitant increase in TRAP staining for osteoclast number and area in HFD-PI mice over LFD-PI mice. These data support the concept that M-MDSC expansion during obesity to become osteoclasts during periodontitis is related to increased alveolar bone destruction, providing a more detailed mechanistic appreciation of the interconnection between obesity and periodontitis.
Periodontitis is a common chronic inflammatory disease characterized by destruction of the supporting structures of the teeth. Severe periodontitis is highly prevalent—affecting 10%‐15% of adults—and carries several negative comorbidities, thus reducing quality of life. Although a clear relationship exists between severity of obesity and incidence of periodontal disease, the biologic mechanisms that support this link are incompletely understood. In this conceptual appraisal, a new “two‐hit” model is presented to explain obesity‐exacerbated periodontal bone loss. This proposed model recognizes a previously unappreciated aspect of myeloid‐derived suppressor cell population expansion, differentiation, and activity that can participate directly in periodontal bone loss, providing new mechanistic and translational perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.