There is a growing interest in personalized and preventive medicine initiatives that leverage serious patient engagement, such as those initiated and pursued among participants in the quantified-self movement. However, many of the self-assessments that result are not rooted in good scientific practices, such as exploiting controls, dose escalation strategies, multiple endpoint monitoring, etc. Areas where individual monitoring and health assessments have great potential involve sleep and behavior, as there are a number of very problematic sleep and behavior-related conditions that are hard to treat without personalization. For example, winter depression or seasonal affective disorder (SAD) is a serious, recurrent, atypical depressive disorder impacting millions each year. In order to prevent yearly recurrence antidepressant drugs are used to prophylactically treat SAD. In turn, these antidepressant drugs can affect sleep patterns, further exacerbating the condition. Because of this, possibly unique combinatorial or 'polypharmaceutical' interventions involving sleep aids may be prescribed. However, little research into the effects of such polypharmacy on the long-term sleep quality of treated individuals has been pursued. Employing wireless monitoring in a patient-centered study we sought to gain insight into the influence of polypharmacy on sleep patterns and the optimal course of therapy for an individual being treated for SAD with duloxetine (Cymbalta) and temazepam. We analyzed continuous-time sleep data while dosages and combinations of these agents were varied. We found that the administration of Cymbalta led to an exacerbation of the subject's symptoms in a statistically significant way. Further, we unmasked and monitored treatment effects on a latent obstructive sleep apnea condition. We argue that such analyses may be necessary to effectively treat individuals with similar overall clinical manifestations and diagnosis, despite their having a unique set of symptoms, genetic profiles and exposure histories. We also consider the limitations of our study and areas for further research.
There is a growing interest in personalized and preventive medicine initiatives that leverage serious patient engagement, such as those initiated and pursued among participants in the quantified-self movement. However, many of the self-assessments that result are not rooted in good scientific practices, such as exploiting controls, dose escalation strategies, multiple endpoint monitoring, etc. Areas where individual monitoring and health assessments have great potential involve sleep and behavior, as there are a number of very problematic sleep and behavior-related conditions that are hard to treat without personalization. For example, winter depression or seasonal affective disorder (SAD) is a serious, recurrent, atypical depressive disorder impacting millions each year. In order to prevent yearly recurrence antidepressant drugs are used to prophylactically treat SAD. In turn, these antidepressant drugs can affect sleep patterns, further exacerbating the condition. Because of this, possibly unique combinatorial or ‘polypharmaceutical’ interventions involving sleep aids may be prescribed. However, little research into the effects of such polypharmacy on the long-term sleep quality of treated individuals has been pursued. Employing wireless monitoring in a patient-centered study we sought to gain insight into the influence of polypharmacy on sleep patterns and the optimal course of therapy for an individual being treated for SAD with duloxetine (Cymbalta) and temazepam. We analyzed continuous-time sleep data while dosages and combinations of these agents were varied. We found that the administration of Cymbalta led to an exacerbation of the subject’s symptoms in a statistically significant way. We argue that such analyses may be necessary to effectively treat individuals with similar overall clinical manifestations and diagnosis, despite their having a unique set of symptoms, genetic profiles and exposure histories. We also consider the limitations of our study and areas for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.