Buddleia species is commonly used as a perennial for landscaping as a result of its heavy flowers and long bloom period. However, this species has a few concerns such as lack of flower color, excessive growth, and an invasive nature. Attempts to improve Buddleia using conventional breeding methods have resulted in limited success. In this study, mutagenesis by gamma ray irradiation was used to induce genetic variations. In vitro shoot tips of two Buddleia cultivars, B. davidii ‘Potters Purple’ and Buddleia ‘Lochinch’, were exposed to 0 to 150 Gy gamma rays and then recovered in Murashige and Skoog (MS) medium supplemented with 2.5 μM benzyladenine (BA). Shoots that recovered from the gamma ray treatment were rooted in half-strength MS medium with 0.5 μM naphthalene acetic acid (NAA) and grown in the greenhouse. The growth of shoot tips was inhibited after they were exposed to gamma rays. An average of 50.8% of shoots treated with 50 Gy gamma rays were recovered, whereas only 9.7% and 6.5% of shoots recovered when exposed to 100 and 150 Gy gamma rays, respectively. After transfer to the greenhouse, a few plants showed reduced growth with some dying before they reached the flowering stage. Various variations including characteristics of leaves (shape, size, hairs), stems (shape, internode length, branching), flowers (color, size, and structure), and plant stature were observed. This research demonstrates that in vitro mutation induction using gamma ray irradiation could be a useful protocol to develop new cultivars or genetic materials for further breeding of Buddleia or other related species.
Chokecherry (Prunus virginiana L.) was transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pBI121 carrying the neomycin phosphotransferase gene (nptII) and β-glucuronidase (GUS) gene (uidA). Plants were regenerated from the Agrobacterium-infected leaf tissues through organogenesis on woody plant medium (WPM) supplemented with MS (Murashige and Skoog) vitamins, 10 μm 6-benzyladenine (BA), and 250 mg·L−1 cefotaxime plus 500 mg·L−1 carbenicillin plus 15 mg·L−1kanamycin (CCK15). Transformation was verified with polymerase chain reaction (PCR) and Southern blot analysis. Four of 150 (2.67%) initial explants produced GUS- and PCR-positive shoots. Southern blot analysis confirmed that the transgenes were integrated into the chokecherry genome. Transgenic in vitro shoots were rooted in half-strength MS medium containing 10 μm naphthalene acetic acid. Rooted plants were transferred to potting mix and grown in the greenhouse. This research shows a potential for future improvement of chokecherry and other Prunus species. Chemical names used: 6-benzyladenine (BA), naphthalene acetic acid (NAA), acetosyringone (AS), 5-Bromo-4-chloro-3-indoxyl-beta-D-glucuronide cyclohexylammonium (X-Glu), cefotaxime, carbenicillin, kanamycin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.