A successful drilling operation is heavily dependent on the effectiveness of the drilling fluid's design in use. This study attempts to evaluate the rheological and filtration properties of water-based drilling mud (WBDM) upon the addition of Stearyl Acrylate-Behenyl Acrylate (SABA) copolymer, silicon dioxide (SiO2), and nickel (III) oxide (Ni2O3) nanoparticles. This SABA copolymer-nanofluid was prepared by dissolving the nanofluid in a SABA polymer solution and homogenizing it using ultrasonication. The properties were studied using mud balance, viscometer, and low-pressure low-temperature (LPLT) filter press. The rheological and filtration properties of SABA copolymer were found to imply that it could improve drilling fluid performance. However, the addition of nanoparticles gave a better performance of rheological and filtration properties on WBDM. SABA copolymer with 5000 ppm concentration shows the best performance due to showing the highest viscosity compared to basic drilling fluid. Also, the addition of 800 ppm of Ni2O3 concentration into 5000 ppm of SABA shows the lowest fluid losses. The experimental results indicate that SABA copolymer shows a great potential application and the addition of nanoparticles shows that nanotechnology has a lot of potentials to improve WBM performance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.