The development of influenza vaccines that can provide broad protection against all drifted seasonal virus variants, zoonotic infections and emerging pandemic strains, has been a priority for two decades. Here we propose a strategy of inducing broadly-reactive anti-stalk antibody by sequential immunizations with live attenuated influenza vaccines (LAIVs) expressing chimeric HAs (cHAs). These vaccines are designed to contain identical hemagglutinin stalk domains from H1N1 virus but antigenically unrelated globular head domains from avian influenza virus subtypes H5, H8 and H9. Mouse experiments demonstrated enhanced cross-protection of cHA-containing LAIVs compared to the relevant vaccine viruses expressing natural HAs, and this enhanced protection was driven by stalk-HA-reactive IgG antibodies. The establishment of fully functional cross-protective immunity after two doses of cHA LAIV vaccination in naïve animals suggests that a similar effect might be expected after a single cHA LAIV dose in primed individuals, or after two to three doses in naïve children.
SummaryBackground-Recently emerged H7N9 avian influenza viruses are characterized by enhanced virulence and presence of mammalian adaptation markers, suggesting their pandemic potential. Specific influenza vaccines remain the key defense against a possible H7N9 pandemic. We report here the safety and immunogenicity results from a phase 1 clinical trial of H7N9 live attenuated influenza vaccine (LAIV) candidate in healthy adult volunteers.
Background
We evaluated a Russian-backbone, live, attenuated influenza vaccine (LAIV) for immunogenicity and viral shedding in a randomized, placebo-controlled trial among Bangladeshi children.
Methods
Healthy children received a single, intranasal dose of LAIV containing the 2011–2012 recommended formulation or placebo. Nasopharyngeal wash (NPW) specimens were collected on days 0, 2, 4, and 7. Reverse transcription polymerase chain reactions and sequencing identified the influenza virus (vaccine or wild-type). On days 0 and 21, blood specimens were collected to assess immunogenicity using hemagglutination inhibition, microneutralization, and immunoglobulin A (IgA) and G enzyme-linked immunosorbent assays (ELISAs); NPW specimens were also collected to assess mucosal immunogenicity using kinetic IgA ELISA.
Results
We enrolled 300 children aged 24 through 59 months in the immunogenicity and viral shedding analyses. Among children receiving LAIV, 45% and 67% shed A/H3N2 and B vaccine strains, respectively. No child shed A/H1N1 vaccine strain. There were significantly higher day 21 geometric mean titers (GMTs) for the LAIV, as compared to the placebo groups, in all immunoassays for A/H3N2 and B (log10 titer P < .0001; GMT Ratio >2.0). Among immunoassays for A/H1N1, only the mucosal IgA GMT was significantly higher than placebo at day 21 (log10 titer P = .0465).
Conclusions
Children vaccinated with LAIV had serum and mucosal antibody responses to A/H3N2 and B, but only a mucosal IgA response to A/H1N1. Many children shed A/H3N2 and B vaccine strains, but none shed A/H1N1. More research is needed to determine the reason for decreased LAIV A/H1N1 immunogenicity and virus shedding.
Clinical Trials Registration
NCT01625689.
The development of universal influenza vaccines has been a priority for more than 20 years. We conducted a preclinical study in ferrets of two sets of live attenuated influenza vaccines (LAIVs) expressing chimeric hemagglutinin (cHA). These vaccines contained the HA stalk domain from H1N1pdm09 virus but had antigenically unrelated globular head domains from avian influenza viruses H5N1, H8N4 and H9N2. The viral nucleoproteins (NPs) in the two sets of universal LAIV candidates were from different sources: one LAIV set contained NP from A/Leningrad/17 master donor virus (MDV), while in the other set this gene was from wild-type (WT) H1N1pdm09 virus, in order to better match the CD8 T-cell epitopes of currently circulating influenza A viruses. To avoid any difference in protective effect of the various anti-neuraminidase (NA) antibodies, all LAIVs were engineered to contain the NA gene of Len/17 MDV. Naïve ferrets were sequentially immunized with three doses of (i) classical LAIVs containing non-chimeric HA and NP from MDV (LAIVs (NP-MDV)); (ii) cHA-based LAIVs containing NP from MDV (cHA LAIVs (NP-MDV)); and (iii) cHA-based LAIVs containing NP from H1N1pdm09 virus (cHA LAIVs (NP-WT)). All vaccination regimens were safe, producing no significant increase in body temperature or weight loss, in comparison with the placebo group. The two groups of cHA-based vaccines induced a broadly reactive HA stalk-directed antibody, while classical LAIVs did not. A high-dose challenge with H1N1pdm09 virus induced significant pathology in the control, non-immunized ferrets, including high virus titers in respiratory tissues, clinical signs of disease and histopathological changes in nasal turbinates and lung tissues. All three vaccination regimens protected animals from clinical manifestations of disease: immunized ferrets did not lose weight or show clinical symptoms, and their fever was significantly lower than in the control group. Further analysis of virological and pathological data revealed the following hierarchy in the cross-protective efficacy of the vaccines: cHA LAIVs (NP-WT) > cHA LAIVs (NP-MDV) > LAIVs (NP-MDV). This ferret study showed that prototype universal cHA-based LAIVs are highly promising candidates for further clinical development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.