The cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae) (Bouché), is the most common flea species found on cats and dogs worldwide. We investigated the genetic identity of the cosmopolitan subspecies C. felis felis and evaluated diversity of cat fleas from Australia, Fiji, Thailand and Seychelles using mtDNA sequences from cytochrome c oxidase subunit I (cox1) and II (cox2) genes. Both cox1 and cox2 confirmed the high phylogenetic diversity and paraphyletic origin of C. felis felis. The African subspecies C. felis strongylus (Jordan) is nested within the paraphyletic C. felis felis. The south East Asian subspecies C. felis orientis (Jordan) is monophyletic and is supported by morphology. We confirm that Australian cat fleas belong to C. felis felis and show that in Australia they form two distinct phylogenetic clades, one common with fleas from Fiji. Using a barcoding approach, we recognize two putative species within C. felis (C. felis and C. orientis). Nucleotide diversity was higher in cox1 but COX2 outperformed COX1 in amino acid diversity. COX2 amino acid sequences resolve all phylogenetic clades and provide an additional phylogenetic signal. Both cox1 and cox2 resolved identical phylogeny and are suitable for population structure studies of Ctenocephalides species.
BackgroundFew, if any, protozoan parasites are reported to exhibit extreme organ tropism like the flagellate Tritrichomonas foetus. In cattle, T. foetus infects the reproductive system causing abortion, whereas the infection in cats results in chronic large bowel diarrhoea. In the absence of a T. foetus genome, we utilized a de novo approach to assemble the transcriptome of the bovine and feline genotype to identify host-specific adaptations and virulence factors specific to each genotype. Furthermore, a subset of orthologs was used to characterize putative druggable targets and expose complications of in silico drug target mining in species with indefinite host-ranges.ResultsIllumina RNA-seq reads were assembled into two representative bovine and feline transcriptomes containing 42,363 and 36,559 contigs, respectively. Coding and non-coding regions of the genome libraries revealed striking similarities, with 24,620 shared homolog pairs reduced down to 7,547 coding orthologs between the two genotypes. The transcriptomes were near identical in functional category distribution; with no indication of selective pressure acting on orthologs despite differences in parasite origins/host. Orthologs formed a large proportion of highly expressed transcripts in both genotypes (bovine genotype: 76%, feline genotype: 56%). Mining the libraries for protease virulence factors revealed the cysteine proteases (CP) to be the most common. In total, 483 and 445 bovine and feline T. foetus transcripts were identified as putative proteases based on MEROPS database, with 9 hits to putative protease inhibitors. In bovine T. foetus, CP8 is the preferentially transcribed CP while in the feline genotype, transcription of CP7 showed higher abundance. In silico druggability analysis of the two genotypes revealed that when host sequences are taken into account, drug targets are genotype-specific.ConclusionGene discovery analysis based on RNA-seq data analysis revealed prominent similarities between the bovine and feline T. foetus, suggesting recent adaptation to their respective host/niche. T. foetus represents a unique case of a mammalian protozoan expanding its parasitic grasp across distantly related host lineages. Consequences of the host-range for in silico drug targeting are exposed here, demonstrating that targets of the parasite in one host are not necessarily ideal for the same parasite in another host.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-955) contains supplementary material, which is available to authorized users.
Establishing a health screening protocol is fundamental for successful captive breeding and release of wildlife. The aim of this study was to undertake a parasitological survey focusing on the presence of trypanosomes in a cohort of Regent Honeyeaters, Anthochaera phrygia, syn. Xanthomyza phrygia (Aves: Passeriformes) that are part of the breeding and reintroduction programme carried out in Australia. We describe a new blood parasite, Trypanosoma thomasbancrofti sp. n. (Kinetoplastida: Trypanosomatidae) with prevalence of 24·4% (20/81) in a captive population in 2015. The sequence of the small subunit rRNA gene (SSU rDNA) and kinetoplast ultrastructure of T. thomasbancrofti sp. n. are the key differentiating characteristics from other Trypanosoma spp. T. thomasbancrofti sp. n. is distinct from Trypanosoma cf. avium found in sympatric Noisy Miners (Manorina melanocephala). The SSU rDNA comparison suggests an intercontinental distribution of T. thomasbancrofti sp. n. and Culex mosquitoes as a suspected vector. Currently, no information exists on the effect of T. thomasbancrofti sp. n. on its hosts; however, all trypanosome-positive birds remain clinically healthy. This information is useful in establishing baseline health data and screening protocols, particularly prior to release to the wild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.