Ion channels are effector proteins that mediate uterine excitability throughout gestation. This review will focus primarily on the role of potassium channels in regulating myometrial tone in pregnancy and labor contractions. During gestation, potassium channels maintain the uterus in a state of quiescence by contributing to the resting membrane potential and counteracting contractile stimuli. This review summarizes the current knowledge about the significance of the potassium channels in maintaining a normal gestational period and initiating labor contractions at term.
Objective-Studies have suggested that sex differences in endothelial function in part account for the lower incidence of cardiovascular disease in premenopausal women compared with men. Less is known about the role of smooth muscle. We hypothesized that signaling mechanisms that regulate calcium sensitivity in vascular muscle also play a role in determining sex differences in contractile function. Methods and Results-In aorta, concentration-dependent contractions to serotonin were greater in male versus female mice whereas contractions to KCl and U46619 were similar. Nitric oxide or other endothelial-derived factors did not account for the difference in responses to serotonin because inhibition of nitric oxide synthase (NOS) with N G -nitro-L-arginine, genetic deficiency of endothelial NOS, and removal of endothelium increased contractions but did not abolish the enhanced contractions in aorta from males. Contractions in aorta from both males and females were abolished by a serotonergic 5HT 2A receptor antagonist (ketanserin), however there was no sex difference in 5HT 2A receptor expression. Activation of RhoA and Rho-kinase by serotonin was greater in aorta from males compared with females, but this was not related to greater expression of RhoA or Rho-kinase isoforms (ROCK1 and ROCK2). The sex difference in aortic contractions to serotonin was abolished by an inhibitor of Rho-kinase, Y27632. Conclusion-We conclude that increased contractions to serotonin in aorta from male mice are attributable to differences in RhoA/Rho-kinase activation in smooth muscle independent of differences in the expression of RhoA or Rho-kinase.
1. One essential role for potassium channels in vascular smooth muscle is to buffer cell excitation and counteract vasoconstrictive influences. Several molecular mechanisms regulate potassium channel function. The interaction of these mechanisms may be one method for fine-tuning potassium channel activity in response to various physiological and pathological challenges. 2. The most prevalent K+ channels in vascular smooth muscle are large-conductance calcium- and voltage-sensitive channels (maxi-K channels) and voltage-gated channels (Kv channels). Both channel types are complex molecular structures consisting of a pore-forming alpha-subunit and an ancillary beta-subunit. The maxi-K and Kv channel alpha-subunits assemble as tetramers and have S4 transmembrane domains that represent the putative voltage sensor. While most vascular smooth muscle cells identified to date contain both maxi-K and Kv channels, the expression of individual alpha-subunit isoforms and beta-subunit association occurs in a tissue-specific manner, thereby providing functional specificity. 3. The maxi-K channel alpha-subunit derives its molecular diversity by alternative splicing of a single-gene transcript to yield multiple isoforms that differ in their sensitivity to intracellular Ca2+ and voltage, cell surface expression and post- translational modification. The ability of this channel to assemble as a homo- or heterotetramer allows for fine-tuning control to intracellular regulators. Another level of diversity for this channel is in its association with accessory beta-subunits. Multiple beta-subunits have been identified that can arise either from separate genes or alternative splicing of a beta-subunit gene. The maxi-K channel beta-subunits modulate the channel's Ca2+ and voltage sensitivity and kinetic and pharmacological properties. 4. The Kv channel alpha-subunit derives its diverse nature by the expression of several genes. Similar to the maxi-K channel, this channel has been shown to assemble as a homo- and heterotetramer, which can significantly change the Kv current phenotype in a given cell type. Association with a number of the ancillary beta-subunits affects Kv channel function in several ways. Beta-subunits can induce inactivating properties and act as chaperones, thereby regulating channel cell-surface expression and current kinetics.
Acid-sensing ion channels (ASICs) are neuronal non-voltage-gated cation channels that are activated when extracellular pH falls. They contribute to sensory function and nociception in the peripheral nervous system, and in the brain they contribute to synaptic plasticity and fear responses. Some of the physiologic consequences of disrupting ASIC genes in mice suggested that ASIC channels might modulate neuronal function by mechanisms in addition to their H ؉ -evoked opening. Within ASIC channel's large extracellular domain, we identified sequence resembling that in scorpion toxins that inhibit K ؉ channels. Therefore, we tested the hypothesis that ASIC channels might inhibit K ؉ channel function by coexpressing ASIC1a and the high-conductance Ca 2؉ -and voltageactivated K ؉ (BK) channel. We found that ASIC1a associated with BK channels and inhibited their current. Reducing extracellular pH disrupted the association and relieved the inhibition. BK channels, in turn, altered the kinetics of ASIC1a current. In addition to BK, ASIC1a inhibited voltage-gated Kv1.3 channels. Other ASIC channels also inhibited BK, although acidosis-dependent relief of inhibition varied. These results reveal a mechanism of ion channel interaction and reciprocal regulation. Finding that a reduced pH activated ASIC1a and relieved BK inhibition suggests that extracellular protons may enhance the activity of channels with opposing effects on membrane voltage. The wide and varied expression patterns of ASICs, BK, and related K ؉ channels suggest broad opportunities for this signaling system to alter neuronal function.
Large conductance Ca2+ -and voltage-activated K + (maxi-K) channels modulate human myometrial smooth muscle cell (hMSMC) excitability; however, the role of individual alternatively spliced isoforms remains unclear. We have previously shown that the transcript of a human maxi-K channel isoform (mK44) is expressed predominantly in myometrial and aortic smooth muscle and forms a functional channel in heterologous expression systems. The mK44 isoform contains unique consensus motifs for both endoproteolytic cleavage and N -myristoylation, although the function of these post-translational modifications is unknown. The goal of these studies was to determine the role of post-translational modifications in regulating mK44 channel function in hMSMCs. An mK44-specific antibody indicated that this channel is localized intracellularly in hMSMCs and translocates to the cell membrane in response to increases in intracellular Ca 2+ . Immunological analyses using an N-terminally myc-tagged mK44 construct demonstrated endoproteolytical cleavage of mK44 in hMSMCs resulting in membrane localization of the mK44 N-termini and intracellular retention of the pore-forming C-termini. Caffeine-induced Ca 2+ release from intracellular stores resulted in translocation of the C-termini of mK44 to the cell membrane and co-localization with its N-termini. Translocation of mK44 channels to the cell membrane was concomitant with repolarization of the hMSMCs. Endoproteolytic digest of mK44 did not occur in HEK293 cells or mouse fibroblasts. MK44 truncated at a putative N -myristoylation site did not produce current when expressed alone, but formed a functional channel when co-expressed with the N-terminus. These findings provide novel insight into cell-specific regulation of maxi-K channel function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.