A large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries. A third approach surveyed ESTs for protein sequence similarity to a set of known receptors and their ligands with the BLAST algorithm. Finally, both signal-sequence prediction algorithms and BLAST were used to identify single exons of potential genes from within human genomic sequence. The isolation of full-length cDNA clones for each of these candidate genes resulted in the identification of >1000 novel proteins. A total of 256 of these cDNAs are still novel, including variants and novel genes, per the most recent GenBank release version. The success of this large-scale effort was assessed by a bioinformatics analysis of the proteins through predictions of protein domains, subcellular localizations, and possible functional roles. The SPDI collection should facilitate efforts to better understand intercellular communication, may lead to new understandings of human diseases, and provides potential opportunities for the development of therapeutics.
The histopathology archive represents a vast, well-characterized source of specimens covering virtually every disease and is available for molecular biological investigation. The archive has in recent years become widely used for molecular genetic analysis and DNA can be routinely extracted from formalin-fixed, paraffin-embedded tissue. More recently, archival specimens have become a source of material for extensive analysis of mRNA expression utilizing DNA microarrays, real-time quantitative reverse transcriptase polymerase chain reaction (PCR), and in situ hybridization and amplification techniques. These techniques will enable a greater understanding of the changes that occur in gene function during every stage of the development of disease and will lead to better diagnosis, better evaluation of prognosis, and better treatment through targeted therapeutic regimes.
Genetic footprinting was used to assess the phenotypic effects of Ty1 transposon insertions in 268 predicted genes of chromosome V of
Saccharomyces cerevisiae.
When seven selection protocols were used, Ty1 insertions in more than half the genes tested (157 of 268) were found to result in a detectable reduction in fitness. Results could not be obtained for fewer than 3 percent of the genes tested (7 of 268). Previously known mutant phenotypes were confirmed, and, for about 30 percent of the genes, new mutant phenotypes were identified.
This report describes an efficient strategy for determining the functions of sequenced genes in microorganisms. A large population of cells is subjected to insertional mutagenesis. The mutagenized population is then divided into representative samples, each of which is subjected to a different selection. DNA is prepared from each sample population after the selection. The polymerase chain reaction is then used to determine retrospectively whether insertions into a particular sequence affected the outcome of any selection. The method is efficient because the insertional mutagenesis and each selection need only to be performed once to enable the functions of thousands of genes to be investigated, rather than once for each gene. We tested this "genetic footprinting" strategy using the model organism Saccharomyces cerevisiae.
We have cloned and sequenced a gene encoding a yeast homologue of the U1 snRNP 70K protein. The gene, SNP1, encodes a protein which has 30% amino acid identity with the human 70K protein and has a predicted molecular weight of 34 kDa. The yeast and human sequences are more closely related to each other than to other (non‐U1) RNA‐binding proteins, but diverge considerably in their C‐terminal portions. In particular, SNP1 lacks the charged carboxy terminus of the human 70K protein. A yeast strain, a alpha 115, was constructed in which one allele of the SNP1 gene contained a 554 bp deletion. Tetrad analysis of a alpha 115 showed that the SNP1 gene is essential for the viability of yeast cells. The complete human 70K gene did not complement snp1, but the lethal snp1 mutation was rescued by plasmids bearing a chimera in which over half the yeast gene was replaced with the homologous region of the human 70K gene, including the RNA‐binding domain. These results suggest that SNP1 encodes a functional homologue of the U1 snRNP 70K protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.