Background/Purpose
Falls onto outstretched hands are the second most common sports injury and one of the leading causes of upper extremity injury. Injury risk and severity depends on forces being transmitted through the palmar surface to the upper extremity. Although the magnitude and distribution of forces depend on the soft tissue response of the palm, the in vivo properties of palmar tissue have not been characterized. The purpose of this study was to characterize the large deformation palmar soft tissue properties.
Methods
In vivo dynamic indentations were conducted on 15 young adults (21–29 years) to quantify the soft tissue characteristics of over the trapezium. The effects of loading rate, joint position, tissue thickness and sex on soft tissue responses were assessed.
Results
Energy absorbed by the soft tissue and peak force were affected by loading rate and joint angle. Energy absorbed was 1.7–2.8 times higher and the peak force was 2–2.75 times higher at high rate loading than quasistatic rates. Males had greater energy absorbed than females but not at all wrist positions. Damping characteristics were the highest in the group with the thickest soft tissue while damping characteristics were the lowest in group with the thinnest soft tissues.
Conclusion
Palmar tissue response changes with joint position, loading rate, sex, and tissue thickness. Accurately capturing these tissue responses is important for developing effective simulations of fall and injury biomechanics and assessing the effectiveness of injury prevention strategies.
Trapeziometacarpal joint prosthesis revision has been widely reported, mainly due to loosening of the trapezium cup. Our hypothesis is that current prostheses do not sufficiently respect the kinematics of this joint. CT scan acquisitions enabled us to determine the position of the first metacarpal relative to the trapezium in three different characteristic postures, in subjects in different stages of arthrosis. A CAD model of a current prosthesis was inserted into the numerical 3D model of the joint under the different postures. In the numerical model, we observe penetration of the cup by the head of the prosthesis. This virtual penetration could, in vivo, amount to overstressing the prosthetic elements, which would lead to loosening of the cup or of the metacarpal stem and luxation of the prosthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.