In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings.
Galectin-1 (Gal1), an evolutionarily conserved glycan-binding protein, contributes to the creation of an immunosuppressed microenvironment at sites of tumor growth. In spite of considerable progress in elucidating its role in tumor-immune escape, the mechanisms underlying the inhibitory functions of Gal1 remain obscure. Here, we investigated the contribution of tumor Gal1 to tumor growth, metastasis, and immunosuppression in breast cancer. We found that the frequency of Gal1 þ cells in human breast cancer biopsies correlated positively with tumor grade, while specimens from patients with benign hyperplasia showed negative or limited Gal1 staining. To examine the pathophysiologic relevance of Gal1 in breast cancer, we used the metastatic mouse mammary tumor 4T1, which expresses and secretes substantial amounts of Gal1. Silencing Gal1 expression in this model induced a marked reduction in both tumor growth and the number of lung metastases. This effect was abrogated when mice were inoculated with wild-type 4T1 tumor cells in their contralateral flank, suggesting involvement of a systemic modulation of the immune response. Gal1 attenuation in 4T1 cells also reduced the frequency of CD4cells within the tumor, draining lymph nodes, spleen, and lung metastases. Further, it abrogated the immunosuppressive function of T reg cells and selectively lowered the expression of the T-cell regulatory molecule LAT (linker for activation of T cells) on these cells, disarming their suppressive activity. Taken together, our results offer a preclinical proof of concept that therapeutic targeting of Gal1 can overcome breast cancer-associated immunosuppression and can prevent metastatic disease. Cancer Res; 73(3); 1107-17. Ó2012 AACR.
Regulatory signals provide negative input to immunological networks promoting resolution of acute and chronic inflammation. Galectin-1 (Gal-1), a member of a family of evolutionarily conserved glycan-binding proteins, displays broad anti-inflammatory and proresolving activities by targeting multiple immune cell types. Within the innate immune compartment, Gal-1 acts as a resolution-associated molecular pattern by counteracting the synthesis of proinflammatory cytokines, inhibiting neutrophil trafficking, targeting eosinophil migration and survival, and suppressing mast cell degranulation. Likewise, this lectin controls T cell and B cell compartments by modulating receptor clustering and signaling, thus serving as a negative-regulatory checkpoint that reprograms cellular activation, differentiation, and survival. In this review, we discuss the central role of Gal-1 in regulatory programs operating during acute inflammation, autoimmune diseases, allergic inflammation, pregnancy, cancer, and infection. Therapeutic strategies aimed at targeting Gal-1-glycan interactions will contribute to overcome cancer immunosuppression and reinforce antimicrobial immunity, whereas stimulation of Gal-1-driven immunoregulatory circuits will help to mitigate exuberant inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.