More and more attention is being paid to non-destructive testing of connecting elements. Currently, ultrasound control is widely used. A prerequisite for an effective and reliable process of ultrasonic testing is the grain size of the analysed metal. One option for influencing non-grain size of a steel part is to vary the heat treatment and tempering conditions. As part of the study, an assessment was made of the heat treatment modes of steel parts for grain size. It has been established that by changing the heat treatment and tempering regime it is possible to obtain grain with a size of 3-5 points. The optimal mode of the heat treatment process was selected, which allows to obtain the minimum grain size of 4-5 balls that is acceptable for ultrasonic testing.
Alloys used for the manufacture of various structures must be strong and easy to process. Under certain conditions, hydrogen can adversely affect the fracture characteristics of most structural alloys. A classic example is hydrogen embrittlement of high-strength martensitic steel, which is the result of a high concentration of hydrogen in the metal. An extremely high internal concentration of hydrogen in such alloys can be created during chemical or electrochemical processing, such as etching, electroplating, and removing coatings used in the production of a particular product. Over time, this hydrogen forms bubbles and cracks on the internal surfaces of grain boundaries or inclusions and causes slow destruction. This type of embrittlement, caused by hydrogen located in the internal volumes of the alloy and developing during the stay of the alloy under external load, is called internal hydrogen embrittlement. This embrittlement is typical for a large number of alloys used in mechanical engineering. The article discusses the features of the origin of hydrogen and the form of its existence in structural alloys. The process of hydrogen embrittlement in alloyed structural steels is studied. The method of performing analysis on the "G8 GALILEO" hydrogen analyzer for structural alloys is adapted and described. The corresponding results of the work and recommendations are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.