In this catalog we present the updated set of spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor during its first four years of operation. It contains two types of spectra, time-integrated spectral fits and spectral fits at the brightest time bin, from 943 triggered GRBs. Four different spectral models were fitted to the data, resulting in a compendium of more than 7500 spectra. The analysis was performed similarly but not identically to Goldstein et al. All 487 GRBs from the first two years have been re-fitted using the same methodology as that of the 456 GRBs in years three and four. We describe, in detail, our procedure and criteria for the analysis and present the results in the form of parameter distributions both for the observer-frame and rest-frame quantities. The data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
Humans’ core body temperature (CBT) is strictly controlled within a narrow range. Various studies dealt with the impact of physical activity, clothing, and environmental factors on CBT regulation under terrestrial conditions. However, the effects of weightlessness on human thermoregulation are not well understood. Specifically, studies, investigating the effects of long-duration spaceflight on CBT at rest and during exercise are clearly lacking. We here show that during exercise CBT rises higher and faster in space than on Earth. Moreover, we observed for the first time a sustained increased astronauts’ CBT also under resting conditions. This increase of about 1 °C developed gradually over 2.5 months and was associated with augmented concentrations of interleukin-1 receptor antagonist, a key anti-inflammatory protein. Since even minor increases in CBT can impair physical and cognitive performance, both findings have a considerable impact on astronauts’ health and well-being during future long-term spaceflights. Moreover, our findings also pinpoint crucial physiological challenges for spacefaring civilizations, and raise questions about the assumption of a thermoregulatory set point in humans, and our evolutionary ability to adapt to climate changes on Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.