Anecdotal evidence suggests that people with autism may have different processing strategies when accessing the web. However, limited empirical evidence is available to support this. This paper presents an eye tracking study with 18 participants with high-functioning autism and 18 neurotypical participants to investigate the similarities and differences between these two groups in terms of how they search for information within web pages. According to our analysis, people with autism are likely to be less successful in completing their searching tasks. They also have a tendency to look at more elements on web pages and make more transitions between the elements in comparison to neurotypical people. In addition, they tend to make shorter but more frequent fixations on elements which are not directly related to a given search task. Therefore, this paper presents the first empirical study to investigate how people with autism differ from neurotypical people when they search for information within web pages based on an in-depth statistical analysis of their gaze patterns.
The purpose of this study is to test whether visual processing differences between adults with and without highfunctioning autism captured through eye tracking can be used to detect autism. We record the eye movements of adult participants with and without autism while they look for information within web pages. We then use the recorded eye-tracking data to train machine learning classifers to detect the condition. The data was collected as part of two separate studies involving a total of 71 unique participants (31 with autism and 40 control), which enabled the evaluation of the approach on two separate groups of participants, using different stimuli and tasks. We explore the effects of a number of gaze-based and other variables, showing that autism can be detected automatically with around 74% accuracy. These results confrm that eye-tracking data can be used for the automatic detection of high-functioning autism in adults and that visual processing differences between the two groups exist when processing web pages.
Predicting the construct-relevant difficulty of Multiple-Choice Questions (MCQs) has the potential to reduce cost while maintaining the quality of high-stakes exams. In this paper, we propose a method for estimating the difficulty of MCQs from a high-stakes medical exam, where all questions were deliberately written to a common reading level. To accomplish this, we extract a large number of linguistic features and embedding types, as well as features quantifying the difficulty of the items for an automatic question-answering system. The results show that the proposed approach outperforms various baselines with a statistically significant difference. Best results were achieved when using the full feature set, where embeddings had the highest predictive power, followed by linguistic features. An ablation study of the various types of linguistic features suggested that information from all levels of linguistic processing contributes to predicting item difficulty, with features related to semantic ambiguity and the psycholinguistic properties of words having a slightly higher importance. Owing to its generic nature, the presented approach has the potential to generalize over other exams containing MCQs.
Elements related to cognitive disability are given lower prior ity in web accessibility guidelines due to limited understand ing of the requirements of neurodiverse web users. Mean while, eye tracking has received a lot of interest in the acces sibility community as a way to understand user behaviours. In this study, we combine results from information location tasks and eye tracking data to find out whether users with high-functioning autism experience barriers while using the web compared to users without autism. Our results show that such barriers exist and there is higher variance in the scanpaths of the participants with high-functioning autism while searching for the right answer within web pages. CCS Concepts •Human-centered computing → User studies; Webbased interaction; Empirical studies in accessibility; Accessibility design and evaluation methods;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.