The degradation of microcystin-LR (MC-LR) in cyanobacterial aerosol with atmospheric oxidants, such as ozone and OH radicals, was predicted by the Harmful Algal Aerosol Reaction (HAAR) model. The ozonolysis of MC-LR in cyanobacterial aerosol at nighttime and its photooxidation during the daytime was observed in an outdoor chamber. The HAAR model simulates the impact of humidity and aerosol compositions on MC-LR decay. In the model, gas-particle partitioning of atmospheric oxidants onto algal aerosol was kinetically treated using the absorption and desorption processes. In the model simulation, the half-life of MC-LR estimated with its ozonolysis rate constant (3 × 10–11cc/molecules/s) is 4.6 h ± 0.92 at 66 ppb ozone. With the reaction rate constant for MC-LR with OH radicals (6 × 10–7 cc/molecules/s), the estimated half-life of MC-LR during daytime under Florida’s typical summer sunlight is 6 minutes, suggesting that the reaction with OH radicals dominates daytime MC-LR decay. Under moderate sunlight with a typical wind speed (9.2 km/h), the dispersion and HAAR models predict that 25% of aerosolized MC-LR undergoes the atmospheric process within 0.92 km from a bloom source in Florida’s largest lake, suggesting the critical role of the atmospheric oxidation of MC-LR decay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.