The objective of this work was to study the resistance and removal capacity of heavy metals by the yeast Candida albicans. The resistance of some heavy metals was analyzed: the yeast grows in 2000 ppm of chromium, zinc, lead, and copper, 1500 ppm of arsenic (III), 500 ppm of silver, and little bit in cobalt (300 ppm) and mercury and cadmium (200 ppm). Analyzing its potential to remove heavy metals, it can efficiently remove is as follows: Cr(VI) (76%), lead (57%), silver (51%), cadmium (46%), fairly arsenic(III) (40% with the modified biomass), cobalt (37%), mercury (36%), copper (31%), little bit zinc (22%), and fluoride (10%). We determine the optimal characteristics for chromium(VI) removal in living cells and death biomass. The ideal conditions for the removal of 50 mg/L of Cr(VI) in living cells were 28°C, pH 7.0, and 10 × 10 6 yeast/mL, with glycerol-like carbon source. In dead yeast biomass, the ideal conditions for removal of metal are 200 mg/L of Cr(VI), 60°C, pH 1.0, 20 h, and 5 g of biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.