Exposure to HIV type 1 (HIV-1) does not usually lead to infection. Although this could be because of insufficient virus titer, there is now abundant evidence that some individuals resist infection even when directly exposed to a high titer of HIV. This protection recently has been correlated with homozygous mutations of an HIV-1 coreceptor, namely CCR5, the receptor for the -chemokines. Moreover, earlier results already had shown that the same chemokines markedly suppress the nonsyncitial inducing variants of HIV-1, the chief virus type transmitted from person to person. CCR5 mutation, as a unique mechanism of protection, is, however, suspect because HIV-1 variants can use other chemokine receptors as their coreceptor. Moreover, recent results have established that infection can indeed sometimes occur with such mutations. Here, we report on transient natural resistance over time of most of 128 hemophiliacs who were inoculated repeatedly with HIV-1-contaminated Factor VIII concentrate from plasma during 1980-1985 before the development of the HIV blood test. Furthermore, and remarkably, 14 subjects remain uninfected to this date, and in these subjects we found homozygous CCR5 mutations in none but in most of them overproduction of  chemokines. In vitro experiments confirmed the potent anti-HIV suppressive effect of these chemokines.
HIV type 1 (HIV-1) not only directly kills infected CD4؉ T cells but also induces immunosuppression of uninfected T cells. Two immunosuppressive proteins, interferon ␣ (IFN␣) and extracellular Tat, mediate this process because specific antibodies against these proteins prevent generation of suppressor cells in HIV-1-infected peripheral blood mononuclear cell cultures. Furthermore, the production of C-C chemokines in response to immune cell activation, initially enhanced by IFN␣ and Tat, ultimately is inhibited by these proteins in parallel with their induction of immunosuppression. The clinical corollary is the immunosuppression of uninfected T cells and the decline in C-C chemokine release found at advanced stages of HIV-1 infection paralleling rising levels of IFN␣ and extracellular Tat. We, therefore, suggest that IFN␣ and Tat may be critical targets for anti-AIDS strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.