Mandibles of yellow-necked mouse (Apodemus flavicollis) were used to explore modularity. We tested a biological hypothesis that two separate modules (alveolar region and ascending ramus) can be recognized within the mandible. As a second research goal, we compared two different morphometric procedures under the assumption that methodological approaches that use either geometric or traditional morphometric techniques should give similar results. Besides confirmation of the predicted hypothesis of modularity, the application of both approaches revealed that: (i) modularity was somewhat more evident when it was analysed on the asymmetric (fluctuating asymmetry, FA) than on the symmetric (individual variation) component of variation; (ii) there is correspondence in the patterns of individual variation and FA, which indicates that integration of mandibular traits among individuals is primarily due to direct developmental interactions; and (iii) allometry does not obscure the hypothesized modularity for individual variation or for FA. In addition, traditional morphometric method allowed us to check whether allometry influenced each module to the same extent and to conclude that the ascending ramus is more heavily influenced by general size than the alveolar region. In studies of modularity, differences in methods can lead to discrepancies in the results, and therefore, some caution is required when comparing findings from different investigations. The substantial agreement between our results provides evidence that, when considering two-module organization of the mouse mandible, direct comparison among studies that use the methods applied herein is, in great part, reliable.
We explored the cryptic speciation of the Nannospalax leucodon species complex, characterised by intense karyotype evolution and reduced phenotypic variability that has produced different lineages, out of which 25 are described as chromosomal forms (CFs), so many cryptic species remain unnoticed. Although some of them should be classified as threatened, they lack the official nomenclature necessary to be involved in conservation strategies. Reproductive isolation between seven CFs has previously been demonstrated. To investigate the amount and dynamics of genetic discrepancy that follows chromosomal changes, infer speciation levels, and obtain phylogenetic patterns, we analysed mitochondrial 16S rRNA and MT-CYTB nucleotide polymorphism among 17 CFs—the highest number studied so far. Phylogenetic trees delineated 11 CFs as separate clades. Evolutionary divergence values overlapped with acknowledged higher taxonomic categories, or sometimes exceeded them. The fact that CFs with higher 2n are evolutionary older corresponds to the fusion hypothesis of Nannospalax karyotype evolution. To participate in conservation strategies, N. leucodon classification should follow the biological species concept, and proposed cryptic species should be formally named, despite a lack of classical morphometric discrepancy. We draw attention towards the syrmiensis and montanosyrmiensis CFs, estimated to be endangered/critically endangered, and emphasise the need for detailed monitoring and population survey for other cryptic species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.