Purpose: To assess the safety of retailed poultry using the prevalence of antibiotic resistance in Escherichia coli ( E. coli), a dominant intestinal microflora. Methods: Two medium-scale farms and 8 well-known retail outlets within the La-Nkwantanang Madina municipality in Accra were purposively selected for sampling from January to March 2020. We randomly sampled raw chicken (n = 25) and poultry fecal matter (n = 50). All samples were immediately transported on ice to the laboratory for analysis within 12 hours after collection. Conventional culture techniques, biochemical tests, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) were used for isolation and identification. The antimicrobial susceptibility of isolated E. coli strains (n = 36) was tested using the Kirby Bauer disk diffusion method. Results: Antimicrobial resistance in E. coli ranged from 10.7 % (cefotaxime) to 82.1% (tetracycline) in fecal matter and 0% (gentamicin & cefotaxime) to 62.5% (tetracycline) in chicken. The prevalence of antimicrobial resistant E. coli in fecal samples was higher than in chicken for almost all antibiotics tested, except for cefoxitin, cefuroxime, and ceftazidime. Multidrug resistance was 57.1% in E. coli from fecal samples compared to 62.5% in chicken. Conclusion: The high level of resistance to E. coli in fecal matter is of public health concern because cross-contamination often occurs during slaughter and processing. This calls for close surveillance and strict adherence to Hazard Analysis and Critical Control Point (HACCP) principles in the chicken production chain to prevent the transmission of antimicrobial-resistant E. coli strains through the food chain.
Food from animal sources continues to be a significant food safety hazard. This study determined the microbial quality and safety of beef along beef value chains with case studies in the Ashaiman Municipality of Ghana. Raw beef samples were collected from four slaughter slabs in the Ashaiman Municipality and analyzed using standard microbiological methods to determine the quality and prevalence of specific pathogens, including Salmonella species, Listeria monocytogenes (L. monocytogenes), and Brucella species, as well as Toxoplasma gondii (T. gondii), Cyclospora cayetanensis (C. cayetanensis), and Cryptosporidium parvum (C. parvum). Data regarding food safety knowledge and practices were collected and observed from stakeholders (cattle farmers, butchers, and beef retailers). Salmonella typhimurium was isolated from 7.5% (6/80) of the total raw beef samples. However, L. monocytogenes, Brucella spp., T. gondii, C. cayetanensis, and C. parvum were not isolated in this study. The mean level of microbial contamination of beef from the slaughter slabs/abattoir [5.2 Log10 colony-forming unit (CFU)/g] was not significantly different (p > 0.05) from the mean level observed at retail points (5.4 Log10 CFU/g). However, the mean coliform count of 4.3 Log10 CFU/g recorded at retail shops exceeded the permissible limits of 104 CFU/g (4 Log10 CFU/g) required by the Ghana Standards Authority for safety of meat and carcasses. Knowledge on food safety was at average level for butchers and retailers. Unhygienic practices and poor sanitary conditions at the abattoirs and retail shops observed could be the main contributing factors to microbial contamination of raw beef. Continuous education for meat handlers on issues of food safety and monitoring of slaughter activities will reduce the rate and level of contamination of beef.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.