D-beta-Hydroxybutyrate dehydrogenase (BDH), purified as soluble, lipid-free apoenzyme (inactive) from either beef heart or rat liver mitochondria, can be reactivated by short-chain lecithins in the monomeric state. The enzyme was reactivated with dihexanoyl- [PC(6:0)], diheptanoyl- [PC(7:0)], and dioctanoyllecithins [PC(8:0)]. The titration curves of enzyme activity as a function of the phospholipid concentration are consistent with a model in which the enzyme contains two identical, noninteracting lecithin binding sites. The simultaneous occupation of these sites (via an equilibrium random mechanism) is required to activate the apoenzyme. Similar results were obtained with both rat liver and beef heart apoenzymes. The maximal velocities obtained with the different lecithins were similar [110-140 mumol of NAD+ reduced min-1 (mg of protein)-1]. The KL values (the apparent dissociation constants of the lecithin-site complexes) were 1.2 X 10(-4) M [PC(8:0)], 1.5 X 10(-3) M [PC(7:0)], and 4.5 X 10(-3) M [PC(6:0)] at 37 degrees C. This was confirmed by using phospholipase A2 to compete with the dehydrogenase for the lecithin monomers. Comparison of the delta G degrees values for complex formation with the different lecithins shows an average contribution of approximately 2.4 kJ/mol (0.9RT) per CH2 group. The interaction of the apolar moiety of lecithin with the protein seems to be essential for effective binding of phosphatidylcholine to apoBDH. The delta G degrees values, when combined with the estimated delta H degrees values, suggest that the binding of lecithin to the apoenzyme is approximately 60% enthalpy and approximately 40% entropy driven.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.