The large and sparsely hydrated thiocyanate anion, SCN, plays a prominent role in the study of specific ion effects in biological, colloid, and atmospheric chemistry due to its extreme position in the Hofmeister series. Using atomistic modeling of aqueous SCN solutions, we provide novel insight at the molecular scale into the experimentally observed differences in ion pairing, clustering, reorientation dynamics, mutual diffusion, and solubility between the sodium, Na, and the potassium, K, salt. Compared to KSCN, NaSCN has a less pronounced tendency to ion pairing; nevertheless, at high salt concentrations, we observe a strong attraction between Na cations and the nitrogen end of SCN, resulting in larger and more closely packed ion clusters. To accurately model aqueous SCN solutions in computer simulations, we develop a thermodynamically consistent force field rooted in quantum-chemical calculations and refined using the Kirkwood-Buff theory. The force field is compatible with the extended simple point charge and three-point optimal point charge classical water models and reproduces experimental activity derivatives and air-water surface tension for a wide range of salt concentrations.
Describing long-ranged electrostatics using short-ranged pair potentials is appealing because the computational complexity scales linearly with the number of particles. The foundation of the approach presented here is to mimic the long-ranged medium response by cancelling electric multipoles within a small cutoff sphere. We propose a rigorous and formally exact new method that cancels up to infinitely many multipole moments and is free of operational damping parameters often required in existing theories. Using molecular dynamics simulations of water with and without added salt, we discuss radial distribution functions, Kirkwood–Buff integrals, dielectrics, diffusion coefficients, and angular correlations in relation to existing electrostatic models. We find that the proposed method is an efficient and accurate alternative for handling long-ranged electrostatics as compared to Ewald summation schemes. The methodology and proposed parameterization are applicable also for dipole–dipole interactions.
The consecutive binding of two potassium ions to a bis(18-crown-6) analogue of Tröger’s base (BCETB) in water was studied by isothermal titration calorimetry using four different salts, KCl, KI, KSCN, and K 2 SO 4 . A counterintuitive result was observed: the enthalpy change associated with the binding of the second ion is more negative than that of the first (Δ H bind,2 ° < Δ H bind,1 ° ). This remarkable finding is supported by continuum electrostatic theory as well as by atomic scale replica exchange molecular dynamics simulations, where the latter robustly reproduces experimental trends for all simulated salts, KCl, KI, and KSCN, using multiple force fields. While an enthalpic K + –K + attraction in water poses a small, but fundamentally important, contribution to the overall interaction, the probability of the collapsed conformation (COL) of BCETB, where both crown ether moieties (CEs) of BCETB are bent in toward the cavity, was found to increase successively upon binding of the first and second potassium ions. The promotion of the COL conformation reveals favorable intrinsic interactions between the potassium coordinated CEs, which further contribute to the observation that Δ H bind,2 ° < Δ H bind,1 ° . While the observed trend is independent of the counterion, the origin of the significantly larger magnitude of the difference Δ H bind,2 ° – Δ H bind,1 ° observed experimentally for KSCN was studied in light of the weaker hydration of the thiocyanate anion, resulting in an enrichment of thiocyanate ions close to BCETB compared to the other studied counterions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.