Amongst the substances listed as persistent organic pollutants (POP) under the Stockholm Convention on Persistent Organic Pollutants (SCPOP) are chlorinated, brominated, and fluorinated compounds. Most experimental studies investigating effects of POP employ single compounds. Studies focusing on effects of POP mixtures are limited, and often conducted using extracts from collected specimens. Confounding effects of unmeasured substances in such extracts may bias the estimates of presumed causal relationships being examined. The aim of this investigation was to design a model of an environmentally relevant mixture of POP for use in experimental studies, containing 29 different chlorinated, brominated, and perfluorinated compounds. POP listed under the SCPOP and reported to occur at the highest levels in Scandinavian food, blood, or breast milk prior to 2012 were selected, and two different mixtures representing varying exposure scenarios constructed. The in vivo mixture contained POP concentrations based upon human estimated daily intakes (EDIs), whereas the in vitro mixture was based upon levels in human blood. In addition to total in vitro mixture, 6 submixtures containing the same concentration of chlorinated + brominated, chlorinated + perfluorinated, brominated + perfluorinated, or chlorinated, brominated or perfluorinated compounds only were constructed. Using submixtures enables investigating the effect of adding or removing one or more chemical groups. Concentrations of compounds included in feed and in vitro mixtures were verified by chemical analysis. It is suggested that this method may be utilized to construct realistic mixtures of environmental contaminants for toxicity studies based upon the relative levels of POP to which individuals are exposed.
Ionizing radiation from natural sources or anthropogenic activity has the potential to cause oxidative stress or genetic damage in living organisms, through the ionization and excitation of molecules and the subsequent production of free radicals and reactive oxygen species (ROS). The present work focuses on radiation-induced biological effects using the zebrafish (Danio rerio) vertebrate model. Changes in developmental traits and gene expression in zebrafish were assessed after continuous external gamma irradiation (0.4, 3.9, 15 and 38 mGy/h) with corresponding controls, starting at 2.5 hours post fertilization (hpf) and lasting through embryogenesis and the early larval stage. The lowest dose rate corresponded to recommended benchmarks at which adverse effects are not expected to occur in aquatic ecosystems (2–10 mGy/day). The survival observed at 96 hours post fertilization (hpf) in the 38 mGy/h group was significantly lower, while other groups showed no significant difference compared to controls. The total hatching was significantly lower from controls in the 15 mGy/h group and a delay in hatching onset in the 0.4 mGy/h group was observed. The deformity frequency was significantly increased by prolonged exposure duration at dose rates ≥ 0.4 mGy/h. Molecular responses analyzed by RNA-seq at gastrulation (5.5 hpf transcriptome) indicate that the radiation induced adverse effects occurred during the earliest stages of development. A dose-response relationship was found in the numbers of differentially regulated genes in exposure groups compared to controls at a total dose as low as 1.62 mGy. Ingenuity Pathway Analysis identified retinoic acid receptor activation, apoptosis, and glutathione mediated detoxification signaling as the most affected pathways in the lower dose rate (0.54 mGy/h), while eif2 and mTOR, i.e., involved in the modulation of angiogenesis, were most affected in higher dose rates (5.4 and 10.9 mGy/h). By comparing gene expression data, myc was found to be the most significant upstream regulator, followed by tp53, TNF, hnf4a, TGFb1 and cebpa, while crabp2b and vegfab were identified as most frequent downstream target genes. These genes are associated with various developmental processes. The present findings show that continuous gamma irradiation (≥ 0.54 mGy/h) during early gastrula causes gene expression changes that are linked to developmental defects in zebrafish embryos.
In the present study, developmental and reproductive effects of lifelong exposure to environmental relevant concentrations of two natural mixtures of persistent organic pollutants (POP) were investigated using classical and molecular methods in a controlled zebrafish model. The mixtures used were extracted from burbot (Lota lota) liver originating from freshwater systems in Norway: one mixture with high levels and one mixture with background levels of polybrominated diphenyl ethers (PBDE), polychlorinated biphenyls (PCB), and dichlorodiphenyltrichloroethane metabolites (DDT). The concentration of POP measured in the zebrafish ranged from levels detected in wild fish from Lake Mjøsa to concentrations reported in human and wildlife populations, indicating that the experimental fish were exposed to concentrations comparable with wild fish. Phenotypic effects observed in both exposure groups included earlier onset of puberty, increased male/female sex ratio, and differences in body weight at 5 mo of age. Interestingly, genome-wide transcription profiling showed changes in regulation of genes involved in endocrine signaling and growth. The transcriptomics changes include key regulator genes for steroid hormone functions (ncoa3), and growth (c/ebp, ncoa3). The effects observed in the experimental zebrafish model raise the question whether chemical pollution represents a risk to reproductive health of wild fish inhabitating the freshwater system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.