By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.
Heterogeneous nanoparticle catalyst development relies on an understanding of their structure-property relationships, ideally at atomic resolution and in three-dimensions. Current transmission electron microscopy techniques such as discrete tomography can provide this but require multiple images of each nanoparticle and are incompatible with samples that change under electron irradiation or with surveying large numbers of particles to gain significant statistics. Here, we make use of recent advances in quantitative dark-field scanning transmission electron microscopy to count the number atoms in each atomic column of a single image from a platinum nanoparticle. These atom-counts, along with the prior knowledge of the face-centered cubic geometry, are used to create atomistic models. An energy minimization is then used to relax the nanoparticle's 3D structure. This rapid approach enables high-throughput statistical studies or the analysis of dynamic processes such as facet-restructuring or particle damage.
This thesis deals with the growth of GaAs nanowires (NWs) by molecular beam epitaxy (MBE) using vapor-liquid-solid method on various substrates including GaAs(111)B, Si(111) and graphene. The growth of the NWs on GaAs substrates was carried out by Au-catalyzed technique, whereas the growths on Si and graphene substrates were carried out using self-catalyzed technique that has been the main focus of this thesis. The long-term goal of this work was to produce p-n radial junction GaAs NWs for solar cell applications.Necessary conditions were established for obtaining vertical self-catalyzed GaAs NWs on Si(111), which is reproducible from run-to-run. One of the major issues in these NWs grown by both Au-and self-catalyzed techniques is their crystal structure. The Au-catalyzed GaAs NWs usually adopt a wurtzite (WZ) crystal phase, whereas the self-catalyzed NWs a zinc blende (ZB) phase. However, in both the cases the NWs contain stacking faults, rotational twins or/and a mixed crystal phase. The ZB and WZ phases show different optical properties, and one phase might be favored over other for certain applications. Therefore the crystal phase was controlled within single NWs by tuning the V/III ratio and introducing GaAsSb inserts. The change of the crystal phases was correlated with the change in the contact angle of the Ga droplet.Since the discovery of graphene, an ultra-thin two-dimensional material, the research on graphene has become an active field in recent years due to its remarkable properties including excellent electrical and thermal conductivities, mechanical strength and flexibility, and optical transparency. By growing the semiconductor NWs on graphene, a completely new hybrid system can be envisioned where the unique properties of both NWs and graphene can be utilized. Therefore we established a method for the growth of semiconductor NWs on graphene by demonstrating epitaxial growth of vertical GaAs and InAs NWs on different graphitic substrates.Core-shell heterostructure, doping, optical properties, and position controlled growth of self-catalyzed GaAs NWs were investigated. Growth of GaAs/GaAsSb coreshell NWs where the Sb content was tuned from about 10% -70% was studied. The effect of growth temperature and the Sb flux on the morphology of GaAsSb shell was investigated. In addition, by utilizing the core-shell geometry where the shell copies the crystal phase of the core, WZ phase of GaAsSb was demonstrated. Successful p-type doping of GaAs core using Be as dopant, and n-type doping of GaAs shell using Si and Te as dopants were achieved. To investigate the optical properties, GaAs/AlGaAs coreshell NWs were grown with different V/III ratios during the core growth. The NWs grown with high V/III ratio, despite containing a higher density of twinned ZB and WZ GaAs with SFs, were found to have superior optical quality as compared to the NWs grown with low V/III ratio that contain pure ZB GaAs. The observed V/III ratio dependent optical quality was correlated to the intrinsic defects such as As vac...
The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.