Healthcare motoring has become a popular research in recent years. The evolution of electronic devices brings out numerous wearable devices that can be used for a variety of healthcare motoring systems. These devices measure the patient's health parameters and send them for further processing, where the acquired data is analyzed. The analysis provides the patients or their relatives with the medical support required or predictions based on the acquired data. Cloud computing, deep learning, and machine learning technologies play a prominent role in processing and analyzing the data respectively. This chapter aims to provide a detailed study of IoT-based healthcare systems, a variety of sensors used to measure parameters of health, and various deep learning and machine learning approaches introduced for the diagnosis of different diseases. The chapter also highlights the challenges, open issues, and performance considerations for future IoT-based healthcare research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.